K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Gọi E là trung điểm của MB, P là giao điểm của AI với CD. Đặt AB = a
Theo định lý Ta-lét. Ta có: \(\frac{1}{2}=\frac{GE}{GN}=\frac{AE}{NP}\)
A M E G B I P C N D
\(=\frac{\frac{2}{3}AB}{\frac{1}{2}CD+CP}=\frac{4a}{3a+6CP}\Rightarrow CP=\frac{5a}{6}\)
Suy ra \(\frac{IB}{IC}=\frac{AB}{CP}=\frac{6}{5}\)
Vì \(\frac{GA}{GP}=\frac{GE}{GM}=\frac{1}{2}\)nên \(\frac{GA}{AP}=\frac{1}{3}\) (1)
Mà \(\frac{IA}{IP}=\frac{IB}{IC}=\frac{6}{5}\)nên kết hợp với (1) ta được: \(\frac{GI}{AP}=\frac{AI}{AP}-\frac{AG}{AP}=\frac{6}{11}-\frac{1}{3}=\frac{7}{33}\) (2)
Chia theo vế của (1) cho (2) ta được:
\(\frac{GA}{GI}=\frac{11}{7}\)
Tóm lại \(\frac{GA}{GI}=\frac{11}{7};\frac{IB}{IC}=\frac{6}{5}\)
Èo, lúc trước làm, giờ đọc lại chả hiểu gì:( mà lúc đó mới lớp 7 ko hiểu sao mình lại làm được ta:)) giờ làm ko đc:(