Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
vì ABCD là hình bình hành
=>AB=CD và AB//CD
vì AB//CD=>góc ABE=góc CDF
vì AE//CF=>góc AEF=góc CFE
xét tam giác EAB và tam giác FCD có
góc ABE=góc CDF,góc AEF=góc CFE,AB=CD
=>tam giác EAB=tam giác FCD
b
vì ABCD là hình bình hành
=>o là trung điểm AC
vì tam giác EAB=tam giác FCD=>AE=CF
xét tứ giác AFCE có
AE=CF,AE//CF
=>AFCE là hình bình hành
mà o là trung điểm AC
=>o là trung điểm EF=>E đối xứng với F qua O
a: Gọi K là giao điểm của AE và DC
Gọi F là giao điểm của CF và AB
Xét tứ giác AHCK có
AH//CK
AK//CH
Do đó: AHCK là hình bình hành
Xét ΔEAB và ΔFCD có
\(\widehat{EAB}=\widehat{FCD}\)
AB=CD
\(\widehat{EBA}=\widehat{FDC}\)
Do đó: ΔEAB=ΔFCD
a: Gọi giao điểm của AE và DC là K
giao điểm của CF và AB là H
Xét tứ giác AHCK có
AH//CK
AK//CH
Do đó: AHCK là hình bình hành
Xét ΔEAB và ΔFCD có
\(\widehat{EBA}=\widehat{FDC}\)
AB=CD
\(\widehat{EAB}=\widehat{FCD}\)
Do đó: ΔEAB=ΔFCD
a: Xét ΔEAB và ΔFCD có
\(\widehat{EAB}=\widehat{FCD}\)
AB=CD
\(\widehat{EBA}=\widehat{FDC}\)
Do đó: ΔEAB=ΔFCD