Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:
Vì B là trung điểm của AM nên A, B, M thẳng hàng
Vì C là trung điểm của DN nên D; C; N thẳng hàng.
AB // DC (gt)
⇒ AM // DN (1)
AM = AB x 2 (gt)
DN = DC x 2
AB = DC
⇒ AM = DN (2)
Kết hợp (1) và (2) ta có:
AMND là hình bình hành (tứ giác có một cặp đối diện song song và bằng nhau thì tứ giác đó là hình bình hành.
Gọi G là giao điểm của AN và DM
AMDN là hình bình hành (cmt)
nên G là trung điểm của AN và DM
AB = BM (gt)
DC = AB (gt)
⇒ BM = DC (tính chất bác cầu) (3)
BM // DC (vì AMND là hình bình hành) (4)
Kết hợp (3) và (4) ta có: BMCD là hình bình hành (tứ giác có một cặp cạnh đối diện song song và bằng nhau thì đó là hình bình hành)
Gọi K là giao điểm của BC và DM
Thì K là trung điểm của BC và trung điểm của DM (hình bình hành có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
G là trung điểm của DM (cmt)
K là trung điểm của DM (cmt)
Vậy K \(\equiv\) G; Hay trung điểm của ba đường thẳng AN; DM; BC trùng nhau(đpcm)

a: Ta có: \(AM=MB=\frac{AB}{2}\)
\(DN=NC=\frac{DC}{2}\)
mà AB=CD
nên AM=MB=DN=NC
Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
Hình bình hành AMND có \(\hat{MAD}=90^0\)
nên AMND là hình chữ nhật
Xét tứ giác BMNC có
BM//NC
BM=NC
Do đó: BMNC là hình bình hành
Hình bình hành BMNC có \(\hat{MBC}=90^0\)
nên BMNC là hình chữ nhật
b: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó; BMDN là hình bình hành
c: AMCN là hình bình hành
=>AC cắt MN tại trung điểm của mỗi đường(1)
Ta có: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường(2)
Ta có: AMCN là hình bình hành
=>AN//CM
=>QN//MK
BMDN là hình bình hành
=>DM//BN
=>QM//NK
Xét tứ giác QMKN có
QM//KN
QN//KM
Do đó: QMKN là hình bình hành
=>QK cắt MN tại trung điểm của mỗi đường(3)
Từ (1),(2),(3) suy ra AC,BD,QK,MN đồng quy

a: Ta có: \(AM=MB=\frac{AB}{2}\)
\(DN=NC=\frac{DC}{2}\)
mà AB=CD(ABCD là hình chữ nhật)
nên AM=MB=DN=NC
Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
Hình bình hành AMND có \(\hat{MAD}=90^0\)
nên AMND là hình chữ nhật
Xét tứ giác BMNC có
BM//NC
BM=NC
Do đó: BMNC là hình bình hành
Hình bình hành BMNC có \(\hat{MBC}=90^0\)
nên BMNC là hình chữ nhật
b: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
c: Ta có: AMCN là hình bình hành
=>AN//CM
=>QN//MK
Ta có: BMDN là hình bình hành
=>DM//BN
=>QM//NK
Xét tứ giác MQNK có
MQ//NK
MK//NQ
Do đó: MQNK là hình bình hành
=>MN cắt QK tại trung điểm của mỗi đường(1)
Ta có: AMCN là hình bình hành
=>AC cắt MN tại trung điểm của mỗi đường(2)
Ta có: ABCD là hình chữ nhật
=>AC cắt BD tại trung điểm của mỗi đường(3)
Từ (1),(2),(3) suy ra AC,MN,BD,QK đồng quy
Cho hình chữ nhật \(A B C D\). Gọi \(M\) là trung điểm của \(A B\), \(N\) là trung điểm của \(C D\).
a) Chứng minh \(A M N D\) và \(B M N C\) là hình chữ nhật.
Xét tứ giác \(A M N D\):
- \(A M \parallel D N\) (cùng song song với \(A B\)).
- \(A D \parallel M N\) (cùng song song với \(A D\)).
- Hai cạnh kề \(A M\) và \(A D\) vuông góc.
Vậy \(A M N D\) là hình chữ nhật.
Tương tự, với tứ giác \(B M N C\):
- \(B M \parallel C N\).
- \(B C \parallel M N\).
- Hai cạnh kề \(B M\) và \(B C\) vuông góc.
Vậy \(B M N C\) cũng là hình chữ nhật.
b) Chứng minh \(A M C N\) và \(B M D N\) là hình bình hành.
Xét tứ giác \(A M C N\):
- \(A M \parallel C N\) và \(A M = C N\).
- \(A N \parallel M C\) và \(A N = M C\).
Do có hai cặp cạnh đối song song và bằng nhau nên \(A M C N\) là hình bình hành.
Tương tự, trong tứ giác \(B M D N\):
- \(B M \parallel D N\) và \(B M = D N\).
- \(B N \parallel M D\) và \(B N = M D\).
Suy ra \(B M D N\) cũng là hình bình hành.
c) Gọi \(Q , K\) lần lượt là giao điểm của \(A N\) và \(D M\); \(B N\) và \(C M\). Chứng minh \(A C , D B , Q K , M N\) đồng quy.
- Giao điểm \(Q = A N \cap D M\) và \(K = B N \cap C M\) đều nằm trên đường thẳng song song với \(A B\) (qua trung điểm cạnh bên), do đó \(Q K\) là đường thẳng song song với \(A B\).
- Hai đường chéo \(A C\) và \(B D\) của hình chữ nhật cắt nhau tại \(O\) — chính là tâm hình chữ nhật.
- \(M N\) nối trung điểm \(A B\) và \(C D\), đi qua tâm \(O\).
- Đường \(Q K\) cũng đi qua \(O\).
Vậy bốn đường thẳng \(A C , B D , M N , Q K\) đồng quy tại \(O\).

.a.
Vì `EF` là đường trung trực MB.
=> `EM=EB`
=> `ΔEMB` cân tại E
=> \(\widehat{EMB}=\widehat{EBM}\)
Chứng minh tương tự được: \(\widehat{FMB}=\widehat{FBM}\)
Vì `AM=DN` mà AM//DN
=> Tứ giác `AMND` là hình bình hành.
b.
Từ câu (a) suy ra:
ME//BF
BE//FM
=> Hình bình hành MEBF có `EF⊥MB`
=> Tứ giác MEBF là hình thoi

a: Ta có: CI=2CD
FK=2FE
mà CD=FE(CDEF là hình bình hành)
nên CI=FK
Ta có: CDEF là hình bình hành
=>CD//FE
=>CI//FK
Xét tứ giác CIKF có
CI//KF
CI=KF
Do đó: CIKF là hình bình hành
Ta có: CD=FE
FE=EK
Do đó: CD=EK
Xét tứ giác CDKE có
CD//KE
CD=KE
Do đó: CDKE là hình bình hành
b: Ta có: DI=CD
CD=FE
Do đó: DI=FE
Xét tứ giác DFEI có
DI//FE
DI=FE
Do đó: DFEI là hình bình hành
=>DE cắt FI tại trung điểm của mỗi đường(1)
ta có: CDKE là hình bình hành
=>CK cắt DE tại trung điểm của mỗi đường(2)
Từ (1),(2) suy ra DE,FI,CK đồng quy

a,Vì MN=MA (gt)=> M là trung điểm của AN
xét tứ giác ABNC có; AN và BC là hai đường chéo cắt nhau tại M
M là trung điểm của BC (gt)
M là trung điểm của AN (cmt)
=> ABNC là hình bình hành
b, Vì tgABC vuông cân tại A => AB=AC;gBAC=90độ
vì ABNC là hình bình hành (cmt) có AB = AC
=> ABNC là hình thoi
xét hình thoi ABNC có gBAC = 90 độ => ABNC là hình vuông

A B C D F E O G H M P N
a) Gọi O là giao điểm của BD và AC
Theo bài ra ta có: \(BE=DF< \frac{BD}{2}\)
=> DF<DO và BF< BO
=> E nằm giữa B và O ;
F nằm giữa D và O
O là giao điểm 2 đường chéo của hình bình hành ABCD => OB=OD
Theo bài ra : EB = FD
=> OB-EB= OD-FD
=> OF=OE
Xét tứ giác AECF có: O là trung điểm EF ( OE=OF) và O là trung điểm AC ( ABCD là hình bình hành)
=> AECF là hình bình hành
b) G/s: AN =NM=MB => AM=2/3 AB
=> M là trọng tâm tam giác AGC
mà O là trung điểm AC
=> G; M; O thẳng hàng (1)
Gọi H là giao điểm của CM và AG
=> H là trung điểm AG ,
Lấy P là trung điểm GM
=> HP là đường trung bình của tam giác GAM
=> HP// = 1/2 AM
=> HP//= MB
=> HPBM là hình bình hành
=> PB//=HM
=> PB //ME
Xét tam giác OPB có PB//ME ; M là trung điểm OP
=> ME là đường trung bình
=> E là trung điểm OB
Vậy E là trung điểm OB với O là giao điểm của hai đường chéo hình bình hành ABCD
Giải:
Vì B là trung điểm của AM nên A, B, M thẳng hàng
Vì C là trung điểm của DN nên D; C; N thẳng hàng.
AB // DC (gt)
⇒ AM // DN (1)
AM = AB x 2 (gt)
DN = DC x 2
AB = DC
⇒ AM = DN (2)
Kết hợp (1) và (2) ta có:
AMND là hình bình hành (tứ giác có một cặp đối diện song song và bằng nhau thì tứ giác đó là hình bình hành.
Gọi G là giao điểm của AN và DM
AMDN là hình bình hành (cmt)
nên G là trung điểm của AN và DM
AB = BM (gt)
DC = AB (gt)
⇒ BM = DC (tính chất bác cầu) (3)
BM // DC (vì AMND là hình bình hành) (4)
Kết hợp (3) và (4) ta có: BMCD là hình bình hành (tứ giác có một cặp cạnh đối diện song song và bằng nhau thì đó là hình bình hành)
Gọi K là giao điểm của BC và DM
Thì K là trung điểm của BC và trung điểm của DM (hình bình hành có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
G là trung điểm của DM (cmt)
K là trung điểm của DM (cmt)
Vậy K \(\equiv\) G; Hay trung điểm của ba đường thẳng AN; DM; BC trùng nhau(đpcm)