K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

Suy ra: AE=CF và DE=BF

Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có

KB=ID

\(\widehat{KBF}=\widehat{IDE}\)

Do đó: ΔKBF=ΔIDE

Suy ra: KB=ID

Xét tứ giác BKDI có

BK//ID

BK=ID

Do đó: BKDI là hình bình hành

Suy ra: Hai đường chéo BD và KI cắt nhau tại trung điểm của mỗi đường

a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

Suy ra AE=CF: ED=FB

Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có

FB=ED

\(\widehat{KBF}=\widehat{IDE}\)

Do đó: ΔKBF=ΔIDE

Suy ra: KB=ID

Xét tứ giác KBID có 

KB//ID

KB=ID

Do đó: KBID là hình bình hành

Suy ra: Hai đường chéo KI và BD cắt nhau tại trung điểm của mỗi đường

 

25 tháng 9 2018

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F saocho AE=EF=FC.a) Tứ giác BEDF là hình gì?b) Chứng minh tam giác CFD= tam giác AEBc) Chứng minh tam giác CFB= tam giác EADBài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.a) Xác định D sao cho BDCA là hình vuông.b) Tính độ dài DA.c) Tính diện tích ABCD.Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.a) Xác định O để ABCD là hình bình...
Đọc tiếp

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh tam giác CFD= tam giác AEB
c) Chứng minh tam giác CFB= tam giác EAD

Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?

Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho DBAM. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.

Mong mn giúp mk vs ah

1

đây là nhóm hỏi những bài khó chứ không phải nơi chép bài của những bạn lười nhé

29 tháng 10 2021

Bạn nói hay đó

Đc của ló

 

Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB(Hai cạnh đối của hình bình hành ABCD)

\(\widehat{D}=\widehat{B}\)(Hai góc đối của hình bình hành ABCD)

Do đó: ΔAED=ΔCFB(cạnh huyền-góc nhọn)

Suy ra: AE=CF(Hai cạnh tương ứng) và ED=FB(hai cạnh tương ứng)

Ta có: ED+EC=DC(E nằm giữa D và C)

FB+FA=AB(F nằm giữa A và B)

mà AB=DC(Hai cạnh đối của hình bình hành ABCD)

và ED=FB(cmt)

nên EC=FA

Xét tứ giác ECFA có 

EC=FA(cmt)

EA=CF(cmt)

Do đó: ECFA là hình bình hành(Dấu hiệu nhận biết hình bình hành)

6 tháng 12 2016

A B C D E F I J K

a)

ta có: ABCD là hình vuông

=> AB=BC=CD=DA=>1/2AB=1/2CD=AI=JC

AI//JC

=>tứ giác AICJ là hình bình hành

gọi trung điểm của AC là K

ta có:ABCD là hình vuông=> AC và BD cắt nhau tại trung điểm của mỗi đường

=>BD cắt AC tại K(1)

ta có AICJ là hình bình hành => AC và DJ cắt nhau tại trung điểm của mỗi đường

=>DJ cắt AC tại K(2)

từ (1)(2)=> 3 đoạn thẳng AC,BD,Ị cắt nhau tại trung điểm K của chúng

b)

ta có:

góc ADB=góc DBC

AJ//IC=> góc AED=góc CFB

ta có:

\(\widehat{EAD}=180^o-\widehat{ADB}-\widehat{AED}\)

\(\widehat{FCB}=180^o-\widehat{DBC}-\widehat{CFB}\)

=>góc EAD=góc FCB

xét tam giác DEA và tam giác BFC có

AD=BC(gt)

góc ADB=góc DBC

góc EAD=góc FCB(cmt)

=>tam giác DEA=tam giác BFC(g.c.g)

=>AE=CF

c)

ta có:tứ giác AICJ là hình bình hành

=>AJ=IC

AE=CF

EJ=AJ-AE

IF=IC-FC

=>EJ=IF

 EJ//IF

=>tứ giác IFJE là hình bình hành

d)

xét tam giác ACD có

DK là trung tuyến ứng với cạnh AC

AJ là trung tuyến ứng với cạnh CD

=>giao của DK và AJ là trọng tâm tam giác ACD

=>E là trọng tâm tam giác ACD

cm tương tự ta có: F là trọng tâm tam giác ABC

ta có:

E là trọng tâm tam giác ADC

=>EK=1/2DE

F là trọng tâm tam giác ABC

=>FK=1/2BF

DE=BF(tam giác DEA=tam giác BFC)

=>EK=FK

ta có:

=>FB= DE=2EK=EK+KF=EF

=>DE=EF=FB(đfcm)

6 tháng 12 2016

Khó quá

1: Xét tứ giác AECF có 

O là trung điểm của AC
O là trung điểm của FE

Do đó: AECF là hình bình hành

a: AE\(\perp\)BD

CF\(\perp\)BD

Do đó: AE//CF

Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

=>AE=CF

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: AE//CF

E\(\in\)AH

F\(\in\)CK

Do đó: AH//CK

AB//CD

K\(\in\)AB

H\(\in\)CD

Do đó: AK//CH

Xét tứ giác AHCK có

AH//CK

AK//CH

Do đó: AHCK là hình bình hành

=>AC cắt HK tại trung điểm của mỗi đường(1)

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,HK,BD đồng quy

29 tháng 11 2023

A H K B C D I F

1/

Ta có

\(ÁH\perp BD\left(gt\right);CK\perp BD\left(gt\right)\) => AH//CK (1)

Xét tg vuông ADH và tg vuông BCK có

AD//BC (cạnh đối hbh) \(\Rightarrow\widehat{ADH}=\widehat{CBK}\) (góc so le trong)

AD=BC (cạnh đối hbh)

=> tg ADH = tg BCK (Hai tg cuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => AH=CK (2)

Từ (1) và (2) => AHCK là hbh (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

2/ 

Ta có

AH//CK (cmt) => AI//CF

AB//CD (cạnh đối hbh) => AF//CI

=> AICF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh) => AI = CF (cạnh đối hbh)

4/ Xét hbh AHCK có

AC cắt HK tại O' => O'H=O'K (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường) => O' là trung điểm HK

Mà O cũng là trung điểm HK

=> \(O\equiv O'\) => A; O; C thẳng hàng

5/

Xét hbh AHCK có

AC cắt HK tại O (cmt) => OA=OC

Xét hbh ABCD có

OA=OC (cmt) => OB=OD (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Ta có

AICF là hbh (cmt) => FI cắt AC tại trung điểm O của AC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

=> AC; BD; IF đồng quy