K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2015

bắt chước theo giang hồ đại ca . 5 phút nữa sẽ ra đáp án 

3 tháng 9 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là giao điểm của hai đường chéo AC và BD.

Kẻ OO' ⊥ xy

Ta có: BB' ⊥ xy (gt)

DD' ⊥ xy (gt)

Suy ra: BB // OO' // DD'

Tứ giác BB'D'D là hình thang .

OB = OD (t/chất hình bình hành)

Nên O'B' = O'D'

Do đó OO' là đường trung bình của hình thang BB'D'D

⇒ OO' = (BB' + DD') / 2 (tính chất đường trung hình hình thang) (1)

AA' ⊥ xy (gt)

OO' ⊥ xy (theo cách vẽ)

Suy ra: AA' // OO'

Trong ∆ ACA' tacó: OA = OC (tính chất hình bình hành)

OO' // AA' nên OO' là đường trung bình của  ∆ ACA'

⇒ OO' = 1/2 AA' (tính chất đường trung bình của tam giác)

⇒ AA' = 2OO' (2)

Tử (1) và (2) suy ra: AA' = BB' + DD'

18 tháng 11 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Giả sử hình thang ABCD có AB // CD, đường trung bình là MN. Gọi I là trung điểm của MN, đường thẳng bất kỳ đi qua I cắt AB tại P và CD tại Q.

Ta có hai hình thang APQD và BPQC có cùng đường cao.

MI là đường trung bình của hình thang APQD.

Suy ra: MI = 1/2 (AP + QD)

IN là đường trung bình của hình thang BPQC.

Suy ra: IN = 1/2 (BP + QC)

S A P Q D  = 1/2 (AP + QD).AH = MI.AH (1)

S B P Q C  = 1/2 (BP + QC).AH = IN.AH (2).

IM = IN (gt) (3)

Từ (1), (2) và (3) suy ra: S A P Q D = S B P Q C , các giá trị này không phụ thuộc vào vị trí của P và Q.