Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) EFGH là hình bình hành (các cặp cạnh đối song song)
b) Tam giác CID có PJ//ID và P là trung điểm của CD.
Þ J là trung điểm của CI Þ JC = IJ
Þ AI = IJ = JC;
c) Ta có: SASCQ = 1 2 SEFGH, HE = 2 5 SASCQ.
Þ Kẻ GK ^ CQ tại K Þ SEFGH= GK.HE=GK. 2 5 SASCQ.
Þ SEFGH = 2 5 . 1 2 S A B C D ⇒ S = E F G H 1 5 S A B C D
#Tự vẽ hình nhé bạn#
a) Vì AB // CD nên AM // NC ( 1 )
Ta có : AM = 1 / 2 AB( vì M là trung điểm AB )
NC = 1 / 2 CD ( vì N là trung điểm CD )
Mà AB = CD ( vì ◇ABCD là hình bình hành )
\(\Rightarrow\)AM = NC ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)◇AMNC là hình bình hành
b) Xét \(\Delta\)DQC có :
- N là trung điểm CD
- PN // QC ( vì AN // MC )
\(\Rightarrow\)P là trung điểm DQ
\(\Rightarrow\)PD = PQ ( 3 )
Xét \(\Delta\)ABP có :
- M là trung điểm AB
- AP // MQ ( vì AN // MC )
\(\Rightarrow\)Q là trung điểm BP
\(\Rightarrow\)BQ = PQ ( 4 )
Từ ( 3 ) và ( 4 ) \(\Rightarrow\)DP = PQ = QB