Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: N là trung điểm của BC
Gọi O là giao điểm của AC và BD
Ta có: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔABD có
AO,DM là các đường trung tuyến
AO cắt DM tại I
Do đó: I là trọng tâm của ΔABD
Xét ΔCBD có
DN,CO là các đường trung tuyến
DN cắt CO tại K
Do đó: K là trọng tâm của ΔCBD
Xét ΔADB có
I là trọng tâm
AO là đường trung tuyến
Do đó: \(AI=\dfrac{2}{3}AO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot AC=\dfrac{1}{3}AC\)
Xét ΔCBD có
CO là đường trung tuyến
K là trọng tâm
Do đó: \(CK=\dfrac{2}{3}CO=\dfrac{2}{3}\cdot\dfrac{1}{2}AC=\dfrac{1}{3}AC\)
Ta có: AI+IK+KC=AC
=>\(IK+\dfrac{1}{3}AC+\dfrac{1}{3}AC=AC\)
=>\(IK=\dfrac{1}{3}AC\)
=>AI=IK=KC
1)
A B C D E F
Ta có:
* AB // CD (ABCD là hình bình hành (gt))
\(\Rightarrow\) AE // FC (1)
* Ta có: E là trung điểm AB (gt)
\(\Rightarrow\) EA = EB
F là trung điểm DC (gt)
\(\Rightarrow\) FD = FC
mà AB = DC
\(\Rightarrow\) AE = FC (2)
Từ (1)(2) \(\Rightarrow\) AECF là bình bình hành (dhnb3)
Bài 1:
a: GỌi O là giao của AC và BD
=>O là trung điểm của AC và BD
Xét ΔCBD có
CO,DN các đường trung tuyến
CO cắt DN tại K
Do đó: K là trọng tâm
=>CK=2/3CO=1/3AC
Xét ΔABD có
DM.AO là các đường trung tuyến
DM cắt OA tại I
DO đó: I là trọng tâm
=>AI=2/3AO=1/3AC
=>IK=AC-1/3AC-1/3AC=1/3AC
=>AI=IK=KC
b: Xét ΔBAC có BM/BA=BN/BC
nên MN//AC và MN=1/2AC
=>IK=2/3MN
1/ Ta có AB//=CD (t/c hình bình hành)
KA=KB; IC=ID (đề bài)
=> AK//=IC => AKCI là hình bình hành => AI//CK
2/ Từ AI//CK và KB=KA theo talet
\(\Rightarrow\frac{KB}{KA}=\frac{NB}{NM}=1\Rightarrow NB=NM\left(1\right)\)
Từ AI//CK và ID=IC theo talet
\(\Rightarrow\frac{ID}{IC}=\frac{MD}{NM}=1\Rightarrow MD=MN\left(2\right)\)
Mà BD = MD + NM + NB (3)
Từ (1) (2) và (3) => MD=NM=NB => \(DM=\frac{BD}{3}\)
3/ Gọi O là giao của AC và BD
Do ABCD là hình bình hành => BD cắt BC tại O là trung điểm của AC (t/c đường chéo hbh)
Do AKCI là hình bình hành => IK cắt BC tại trung điểm O của BC (t/c đường chéo hbh)
=> BD; AC; IK đồng qui tại O
bn tự kẻ hình nha!
a) ta có: AB = DC ( ACBD là hình bình hành)
----> BM = CN ( = 1/2. AB = 1/2 . DC)
mà BM // CN
-----> BMNC là h.b.h
b) xét tam giác AMD và tam giác CNB
có: AM = CN ( = 1/2.AB = 1/2.CD)
AD = BC (gt)
^DAM = ^NCB (gt)
-----> tg AMD = tg CNB (c-g-c)
-----> DM = NB ( 2 cạnh t/ ư)
c) AN cắt DM tại I, MC cắt BN tại K. chứng minh : AC,BD,MN,IK
bài làm
Gọi AC cắt DB tại E
ta có: tg AMD = tg CNB (cmt)
-----> ^AMD = ^CNB
mà ^AMD = ^MDN ( AB//DC)
-----> ^CNB = ^MDN
mà ^CNB, ^MDN nằm ở vị trí đồng vị
-----> DM// BN
và DM = BN (pb)
-----> DMBN là h.b.h
-------> BD cắt MN tại E ( do 2 đường chéo của h.b.h cắt nhau tại trung điểm của mỗi đường)
tương tự bn cx chứng minh: MINK là h.b.h ( MI = NK = 1/2.DM = 1/2.BN)
-----> MN cắt IK tại E
------------> AC,BD, MN,IK đồng quy tại E