K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

Bn áp dụng Tính chất của đường trung bình trong tg là đucợ

Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

Xét ΔDFC có

N là trung điểm của DC

NE//FC

Do đó: E là trung điểm của DF

=>DE=EF(1)

Xét ΔABE có

Mlà trung điểm của BA

MF//AE

Do đó: F là trung điểm của BE

=>BF=FE(2)

Từ (1) và (2) suy ra DE=EF=FB

=>vecto DE=vecto EF=vecto FB

10 tháng 9 2020

\(\hept{\begin{cases}AM=NC\\AM||NC\end{cases}\Rightarrow NA||BC}\)

\(\Delta ABK\)có \(\hept{\begin{cases}MI||AK\\MA=MB\end{cases}\Rightarrow IB=IK}\)

\(\Delta CDI\)có \(\hept{\begin{cases}NK||IC\\ND=NC\end{cases}\Rightarrow KD=KI}\)

\(\Rightarrow DK=KI=IB\)

a) N trung điểm AD \(\Rightarrow AN=\frac{AD}{2}=\frac{BC}{2}\)

M trung điểm BC \(\Rightarrow MC=\frac{BC}{2}\Rightarrow AN=MC\)mà AN//MC

nên AMCN là hình bình hành \(\Rightarrow\overrightarrow{AM}=\overrightarrow{NC}\)

b) Tương tự câu a ta được \(\hept{\begin{cases}ND=BM=\frac{1}{2}BC\\ND//BM\end{cases}}\)=> NDMB là hình bình hành=> NB//DM (1)

Xét 2 tam giác ANI và NDK: \(\hept{\begin{cases}AN=ND=\frac{AD}{2}\\\widehat{NAI}=\widehat{DNK}\left(AM//NC\right)\\\widehat{ANI}=\widehat{NDK}\left(NB//MD\right)\end{cases}\Rightarrow\Delta ANI=\Delta NDK\left(g.c.g\right)}\)

\(\Rightarrow NI=DK\)(2)

(1), (2) => \(\overrightarrow{NI}=\overrightarrow{DK}\)

14 tháng 9 2021

\hept là j???

AH
Akai Haruma
Giáo viên
7 tháng 9 2018

Lời giải:

a) Vecto ngược hướng với một vecto là vecto song song nhưng không cùng hướng.

Từ đó dễ thấy \(\overrightarrow{ED}; \overrightarrow{BF}\) là hai vecto ngược hướng với \(\overrightarrow{EF}\)

b) Hai vecto bằng nhau nếu chúng cùng hướng và cùng độ dài.

\(AB=DC\Rightarrow \frac{AB}{2}=\frac{DC}{2}\Rightarrow AM=CN\)

Mà $AM\parallel CN$ nên $AMCN$ là hình bình hành

Do đó: \(AN\parallel CM\) hay \(MF\parallel AE; EN\parallel FC\)

Khi đó: Áp dụng định lý Ta-let:

\(\frac{BF}{EF}=\frac{BM}{MA}=1\Rightarrow BF=EF\)

\(\frac{DE}{EF}=\frac{DN}{NC}=1\Rightarrow DE=EF\)

Vậy \(FB=EF=DE\Leftrightarrow |\overrightarrow{FB}|=|\overrightarrow{EF}|=|\overrightarrow{DE}|\)

Mà 3 vecto trên lại song song và cùng hướng nên \(\overrightarrow{DE}=\overrightarrow{EF}=\overrightarrow{FB}\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2021

Điểm I là điểm nào thế bạn?

12 tháng 5 2017

A B C D O M N E F
a) Giả sử \(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OC}-\overrightarrow{OB}-\overrightarrow{OD}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{BO}+\overrightarrow{OC}+\overrightarrow{DO}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{BO}+\overrightarrow{OA}\right)+\left(\overrightarrow{DO}+\overrightarrow{OC}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\) (đúng do tứ giác ABCD là hình bình hành).
b) \(\overrightarrow{ME}+\overrightarrow{FN}=\overrightarrow{MA}+\overrightarrow{AE}+\overrightarrow{FC}+\overrightarrow{CN}\)
\(=\left(\overrightarrow{MA}+\overrightarrow{CN}\right)+\left(\overrightarrow{AE}+\overrightarrow{FC}\right)\).
Do các tứ giác AMOE, MOFB, OFCN, EOND cũng là các hình bình hành.
Vì vậy \(\overrightarrow{CN}=\overrightarrow{FO}=\overrightarrow{BM};\overrightarrow{FC}=\overrightarrow{ON}=\overrightarrow{ED}\).
Do đó: \(\overrightarrow{ME}+\overrightarrow{FN}=\left(\overrightarrow{MA}+\overrightarrow{CN}\right)+\left(\overrightarrow{AE}+\overrightarrow{FC}\right)\)
\(=\left(\overrightarrow{MA}+\overrightarrow{BM}\right)+\left(\overrightarrow{AE}+\overrightarrow{ED}\right)\)
\(=\overrightarrow{BA}+\overrightarrow{AD}=\overrightarrow{BD}\) (Đpcm).

28 tháng 10 2017

xét tứ giác AECF: có AE = FC và AE//FC => AECF là hình bình hành => AF//CE

xét △DNC: có F là trung điểm của DC và FM//CN (đường tb) => M là trung điểm của DN => vtDM = vtMN (1)

xét △BMA: có E là trung điểm của AB và NE//AM ( đường tb) => N là trung điểm của MB => BM=MN (2)

từ (1) và (2) suy ra : DM=MN=NB => vtDM = vtMN = vtNB ( cùng hướng, cùng độ lớn)


A B C D E M N F