Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng với ΔOCD
=>OA/OC=OB/OD=AB/CD
=>OA/10=OC/18=(OA+OC)/(10+18)=21/28=3/4
=>OA=7,5cm; OC=13,5cm
b: OA/OC=OB/OD
=>OA*OD=OB*OC
c: AM/CN=AB/CD=OA/OC
Xét ΔOAM và ΔOCN có
OA/OC=AM/CN
góc OAM=góc OCN
=>ΔOAM đồng dạng với ΔOCN
=>góc AOM=góc CON
=>góc AOM+góc AON=180 độ
=>M,O,N thẳng hàng
a, xét tứ giác BICG có :
M là trung điểm cuả BC do AM là trung tuyến (gt)
M là trung điểm của GI do I đx G qua M (gt)
=> BICG là hình bình hành (dh)
+ G là trọng tâm của tam giác ABC (gt)
=> GM = AG/2 và GN = BG/2 (đl)
E; F lần lượt là trung điểm của GB; GA (gt) => FG = AG/2 và GE = BG/2 (tc)
=> FG = GM và GN = GE
=> G là trung điểm của FM và EN
=> MNFE là hình bình hành (dh)
b, MNFE là hình bình hành (câu a)
để MNFE là hình chữ nhật
<=> NE = FM
có : NE = 2/3BN và FM = 2/3AM
<=> AM = BN mà AM và BN là trung tuyến của tam giác ABC (Gt)
<=> tam giác ABC cân tại C (đl)
c, khi BICG là hình thoi
=> BG = CG
BG và AG là trung tuyến => CG là trung tuyến
=> tam giác ABC cân tại A
a) Xét ΔABD có
H là trung điểm AD
E là trung điểm AB
=> HE là đường trung bình ΔABD
=> HE//BD và HE = 1/2 BD (1)
CMTT => GF // BD và GF = 1/2 BD (2)
Từ (1) và (2) => HEFG là hình bình hành.
b) Để EFGH là hình chữ nhật
<=> HE = HG. Mà HE = 1/2 BD
HG = 1/2 AC
<=> BD = AC
Vậy khi hai đường chéo AC và BD của tứ giác ABCD bằng nhau thì EFGH là hình chữ nhật.