K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2019

Giải bài 44 trang 133 Toán 8 Tập 1 | Giải bài tập Toán 8

Gọi OH, OK lần lượt là chiều cao của tam giác AOB và tam giác DOC.

Ta có: OK ⊥ CD, CD // AB ⇒ OK ⊥ AB ⇒ O, H, K thẳng hàng.

Do đó:

Giải bài 44 trang 133 Toán 8 Tập 1 | Giải bài tập Toán 8

Mà SABCD = SAOB + SBOC + SCOD + SDOA

Giải bài 44 trang 133 Toán 8 Tập 1 | Giải bài tập Toán 8

Do đó SAOB + SCOD = SBOC + SDOA.

6 tháng 1 2017

Qua O vẽ OH ⊥ AB và OK ⊥ AD ⇒ OH ⊥ DC, OK ⊥ BC

Gọi I, L lần lượt là giao điểm của OK, OH với DC, BC. Ta có:

+ S_ABCD = AB.IH = BC.KL

+ S_ABO = 1/2 AB.OH và S_CDO = 1/2 DC.OI

⇒ S_ABO + S_CDO = 1/2 AB.OH + 1/2 DC.OI

= 1/2 AB.OH + 1/2 AB.OI

= 1/2 AB (OH + OI) = 1/2 AB.IH = 1/2 S_ABCD (1)

+ S_BCO = 1/2 BC.OL và S_DAO = 1/2 AD.OK

⇒ S_BCO + SDAO = 1/2 BC.OL + 1/2AD.OK

= 1/2 BC.OL + 1/2BC.OK

= 1/2BC(OL + OK) = 1/2 BC.KL = 1/2S_ABCD (2)

Từ (1) và (2) ta có: S_ABO + S_CDO = S_BCO + S_DAO

  
22 tháng 4 2017

Từ O lẻ đường thẳng d vuông góc với AB ở H1, cắt CD ở H2.

Ta có OH1 ⊥ AB

Mà AB // CD

Nên OH2 ⊥ CD

Do đó: SABO + SCDO = \(\dfrac{1}{2}\)OH1 . AB + \(\dfrac{1}{2}\) OH2 . CD

= \(\dfrac{1}{2}\)AB (OH1 + OH2)

= \(\dfrac{1}{2}\)AB . H1 . H2

Nên \(S_{ABO}+S_{CDO}=\dfrac{1}{2}S_{ABCD}\) ( 1)

Tương tự \(S_{BCO}+S_{DAO}=\dfrac{1}{2}S_{ABCD}\) (2)

Từ (1) và (2) suy ra :

\(S_{ABO}+S_{CDO}=S_{BCO}+S_{DAO}\)

7 tháng 6 2021

A B C D O E F H K

Ta có SABO = OE.AB : 2

Vì \(\hept{\begin{cases}AB//CD\\\widehat{AEO}=90^{\text{o}}\end{cases}}\Rightarrow\widehat{CFO}=90^{\text{o}}\)

=> SCDO = OF.CD : 2 = OF.AB : 2 

=> SABO + SCDO = EF.AB : 2 = \(\frac{1}{2}S_{ABCD}\)(Vì EF là đường cao hình bình hành ABCD => SABCD = EF.AB)   

Tương tự ta được

SBCO + SDAO =  HK.BC : 2 = \(\frac{1}{2}S_{ABCD}\)(HK đường cao hình bình hành ABCD => SABCD = HK.BC) 

=> SABO + SCDO = SBCO + SDAO (= \(\frac{1}{2}S_{ABCD}\)) => ĐPCM

Tui chịu

B A C D F E I K M

K có đủ giữ liệu

Mới chả có góc nào thì tính kiểu j

Nếu ai k sai thì phải giải cho tui xem đóa

28 tháng 7 2019

Câu hỏi của Hoàng Ngọc Huyền - Toán lớp 8 - Học toán với OnlineMath

Ban tham khao nha !

a) Vì ABCD là hình bình hành 

=> AB = CD ( tính chất) 

AD//BC 

AB//CD 

AD = BC ( tính chất) 

BAD = BCD ( tính chất) 

Vì E là trung điểm AD 

=> AE = ED 

Vì F là trung điểm BC 

=> BF = FC 

Mà AD = BC 

AE = ED = BF = FC

Xét ∆ABE và ∆FCD ta có : 

AB = CD 

AE = BF (cmt)

BAD = FCD ( cmt)

=> ∆ABE = ∆FCD (c.g.c)

b) Vì E\(\in\)AD 

\(\in\)BC 

Mà AD//BC 

=> ED//BF 

Mà ED = BF ( cmt)

=> EBFD là hình bình hành ( dấu hiệu nhận biết) 

c) Vì ABCD là hình bình hành 

=> AC và BD là 2 đường chéo cắt nhau tại trung điểm mỗi đường 

Hay AC và BD cắt nhau tại trung điểm BD (1)

Vì EBCD là hình bình hành 

=> BD và FE là 2 đường chéo cắt nhau tại trung điểm mỗi đường 

Hay FE và BD cắt nhau tại trung điểm BD (2)

Từ (1) và (2) => AC , BD , FE cắt nhau tại trung điểm BD 

=> AC,BD ,FE đồng quy