Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Dưới đây là lời giải siêu gọn, đúng trọng tâm cho từng ý:
Cho: Hình bình hành \(A B C D\),
\(K , I\) là trung điểm của \(A B , C D\);
\(M , N\) là giao điểm của \(A I , C K\) với đường chéo \(B D\).
a) \(A K C I\) là hình bình hành
Vì \(K , I\) là trung điểm \(A B , C D\) ⇒ \(K I \parallel A C\), \(K I = \frac{1}{2} A C\)
Tương tự \(A C \parallel K I\), hai cặp cạnh đối song song ⇒
✅ \(A K C I\) là hình bình hành.
b) \(\angle M A C = \angle N C A\) và \(I M \parallel C N\)
- \(A K C I\) là hình bình hành ⇒ \(A I \parallel C K\)
⇒ \(I M \parallel C N\) (do cùng cắt \(B D\)) - Tam giác \(M A C\) và \(N C A\) có chung \(A C\), hai góc bằng nhau ⇒
✅ \(\angle M A C = \angle N C A\)
c) \(D M = M N = N B\)
- Do \(A I , C K\) cắt nhau tại trung điểm đường chéo trong hình bình hành, chia \(B D\) thành 3 đoạn bằng nhau
⇒ ✅ \(D M = M N = N B\)
d) \(A C , B D , I K\) đồng quy
- \(I K\) nối trung điểm \(A B , C D\) ⇒ là đường trung bình
- Đường chéo \(A C\) cắt \(I K\) tại 1 điểm
- \(B D\) cũng cắt tại điểm đó (do đối xứng trung điểm)
⇒ ✅ \(A C , B D , I K\) đồng quy
Xong! Gọn – đủ – đúng 😎
Cần vẽ hình không?
a: Ta có: \(AK=KB=\frac{AB}{2}\)
\(DI=IC=\frac{DC}{2}\)
mà AB=DC
nên AK=KB=DI=IC
Xét tứ giác AKCI có
AK//CI
AK=CI
Do đó: AKCI là hình bình hành
b: Ta có: AKCI là hình bình hành
=>AI//CK
=>\(\hat{IAC}=\hat{KCA}\)
=>\(\hat{MAC}=\hat{NCA}\)
AI//CK
=>IM//CN
c: Xét ΔDNC có
I là trung điểm của DC
IM//NC
Do đó: M là trung điểm của DN
=>DM=MN
Xét ΔABM có
K là trung điểm của BA
KN//AM
Do đó: N là trung điểm của BM
=>BN=NM
=>BN=NM=DM
d: Ta có: AKCI là hình bình hành
=>AC cắt KI tại trung điểm của mỗi đường(1)
ta có: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1),(2) suy ra AC,KI,BD đồng quy

a ) AK = 1/2 AB
CI = 1/2 CD
Mà AB //= CD nên AK //= CI suy ra
AKCI - hình bình hành
Nên AI // CK
b ) Xét t/g DNC có :
I là trung điểm CD mà IM // NC
=> IM là đường trung bình của t/g DNC
=> MD = MN ( 1 )
Xét t/g ABM có :
K là trung điểm AB mà KN // AM
=> KN là đường trung bình của t/g ABM ( 2 )
Từ ( 1 ) ; ( 2 ) suy ra DM = MN = NB

a) Ta có: AK = 1212 AB
IC = 1212 DC
mà AB = DC (vì ABCD là hình bình hành)
=> AK = IC
=> AK // IC (vì AB // DC)
=> AKCI là hình bình hành
=> AI // KC
b) Xét ΔABMΔABM có:
AK = KB (gt)
AM // KN (vì AI // KC)
=> BN = MN (1)
Xét ΔDNCΔDNC có:
DI = IC (gt)
IM // CN (vì AI // KC)
=> DM = MN (2)
Từ 1 và 2 =>DM=MN=NB