K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 11 2019

\(2IA+AB=0\Leftrightarrow IA+IA+AB=0\Leftrightarrow IA+IB=0\)

\(\Rightarrow I\) là trung điểm AB

\(IC+3MI=0\Leftrightarrow MI=\frac{1}{3}CI\Rightarrow M\) là trọng tâm tam giác ABC

\(\Rightarrow M\in BO\Rightarrow M\in BD\Rightarrow M;B;D\) thẳng hàng

Do M là trọng tâm

\(\Rightarrow BM=\frac{2}{3}BO=\frac{1}{3}BD=\frac{1}{3}\left(BA+BC\right)=\frac{1}{3}\left(2BI+AD\right)=\frac{2}{3}BI+\frac{1}{3}AD\)

Tất cả đều là vecto nha, làm biếng gõ vecto quá, mất thời gian

22 tháng 11 2019

camon ạ !!

Câu 1: 

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)

24 tháng 9 2019

a, CM=MB

b, |CM|=|MB|=1/2|CB|

c, AM=MB+BA

=1/`2.CB-AB

=-1/2.BC-a

vì ABC đều

=> -1/2.a-a

= -5/2.a

GA=2/3.MA

= -2/3.AM

=-2/3.-5/2.a

=5/3.a

GM=1/3.AM

=1/3.-5/2a

=-5/6.a

c, |AB+AC|=|CB|=a

|AB-AC|=|AB+CA|=|CB|=a

17 tháng 11 2022

Câu 1:

vecto AM+vecto BN+vecto CP

=1/2(vecto AB+vecto AC+vecto BA+vecto BC+vecto CA+vecto CB)

=1/2*vecto 0

=vecto 0

20 tháng 8 2019

a) \(\sqrt{2x+2}-\sqrt{2x-1}=x\)

\(\Leftrightarrow2x+2+2x-1-2\sqrt{\left(2x+2\right)\left(2x-1\right)}=x^2\)

\(\Leftrightarrow4x+1-2\sqrt{\left(2x+2\right)\left(2x-1\right)}=x^2\)

\(\Leftrightarrow2\sqrt{4x^2+2x-2}=-x^2+4x+1\)( ĐK: \(2-\sqrt{5}\le x\le2+\sqrt{5}\))

\(\Leftrightarrow4\left(4x^2+2x-2\right)=\left(x^2-4x-1\right)^2\)

\(\Leftrightarrow16x^2+8x-8=x^4-8x^3+14x^2+8x+1\)

\(\Leftrightarrow x^4-8x^3-2x^2+9=0\)

\(\Leftrightarrow x^4-x^3-7x^3+7x^2-9x^2+9=0\)

\(\Leftrightarrow x^3\left(x-1\right)-7x^2\left(x-1\right)-9\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-7x^2-9x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(chon\right)\\x=8,22...\left(loai\right)\end{matrix}\right.\)

Vậy pt có nghiệm duy nhất \(x=-1\)

20 tháng 8 2019

b_em ko chắc đâu, chưa từng làm dạng toán chứa tham số-_-

ĐK: \(x^2\ge-m\) ( ko chắc)

PT<=> \(\left(x-3\right)\sqrt{x^2+m}=\left(x-3\right)\left(x+3\right)\)

\(\Leftrightarrow\left(x-3\right)\left[x+3-\sqrt{x^2+m}\right]=0\)

Thấy ngay x = 3 thỏa mãn. Xét cái ngoặc to

\(\Leftrightarrow x+3=\sqrt{x^2+m}\left(\text{thêm đk }x\ge-3\right)\Leftrightarrow6x+9=m\Leftrightarrow x=\frac{\left(m-9\right)}{6}\)

Do \(x\ge-3\text{nên }m\ge-9\)

Vậy...

1. Cho tam giác ABC a. Dựng điểm R sao cho vecto AR​​= 1/3 vecto AB + 1/3 vecto AC b. Gọi M là trung điểm cạnh AC. Cmr A,B,M thẳng hàng 2. Cho hình bình hành ABCD và 2 điểm E,F thoả mãn vecto DF= vecto CE = 1/3DC Gọi I là giao điểm của AF và DB, J là giao điểm của AE và BC a. Tính vecto AE theo vecto AJ b. Cmr tứ giác ABEF là hình bình hành c. Tính vecto DF theo vecto DE và tính vecto DI theo vecto DB. Cmr IJ // DC 3. Cho tam...
Đọc tiếp

1. Cho tam giác ABC

a. Dựng điểm R sao cho vecto AR​​= 1/3 vecto AB + 1/3 vecto AC

b. Gọi M là trung điểm cạnh AC. Cmr A,B,M thẳng hàng

2. Cho hình bình hành ABCD và 2 điểm E,F thoả mãn vecto DF= vecto CE = 1/3DC

Gọi I là giao điểm của AF và DB, J là giao điểm của AE và BC

a. Tính vecto AE theo vecto AJ

b. Cmr tứ giác ABEF là hình bình hành

c. Tính vecto DF theo vecto DE và tính vecto DI theo vecto DB. Cmr IJ // DC

3. Cho tam giác ABC và I,J là 2 điểm thoả mãn các hệ thức vecto

2IA +3IB -IC=0

2JA +3JB=0

a. -Biểu diễn vecto AI theo vecto AB và vecto AC

-Biểu diễn vecto CJ theo vecto CA và vecto CB

b. P,Q theo 2 điểm thoả mãn hệ thức vecto PQ= 2vecto PA+ 3 vecto PB - vecto PC

Cmr P,Q,I thẳng hàng

c. Gọi M là trung điểm của CQ. CM là đường thẳng PM đi qua J

4. Cho 2 điểm A,B cố định.Tìm Tập hợp điểm M ( quỹ tích M) trong mặt phẳng thoả mãn hệ thức

|MA+MB|=|MA-MB|

Cảm ơn đã giải giúp em ạ

0
3 tháng 12 2022

\(\overrightarrow{AB}=3\overrightarrow{AM};\overrightarrow{CD}=2\overrightarrow{CN};\overrightarrow{BI}=\frac{6}{11}\overrightarrow{BC}\)

Có tứ giác ABCD là hbh=> \(\overrightarrow{CD}=\overrightarrow{BA}\Rightarrow\overrightarrow{BA}=2\overrightarrow{CN}\)

Có G là trọng tâm tam giác BMN

\(\Rightarrow\overrightarrow{GB}+\overrightarrow{GM}+\overrightarrow{GN}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{GA}+\overrightarrow{AB}+\overrightarrow{AN}+\overrightarrow{AM}=\overrightarrow{0}\)\(\Leftrightarrow3\overrightarrow{GA}+\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{CN}+\frac{1}{3}\overrightarrow{AB}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{GA}+\frac{4}{3}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BA}+\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{AG}=\frac{-11}{6}\overrightarrow{AB}-\overrightarrow{AD}\Leftrightarrow\overrightarrow{AG}=\frac{-11}{18}\overrightarrow{AB}-\frac{1}{3}\overrightarrow{AD}\)

\(\overrightarrow{AN}=\overrightarrow{AC}+\overrightarrow{CN}=\frac{1}{2}\overrightarrow{BA}+\overrightarrow{AB}+\overrightarrow{AD}=\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}\)

b/ \(\overrightarrow{AG}=\frac{-11}{18}\overrightarrow{AB}-\frac{1}{3}\overrightarrow{AD}\)

\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}+\frac{6}{11}\overrightarrow{BC}=\overrightarrow{AB}+\frac{6}{11}\overrightarrow{AD}\)

\(\overrightarrow{AG}=-\frac{11}{18}\overrightarrow{AI}\Rightarrow\) thẳng hàng

30 tháng 11 2022

Tính AG còn sai, mà AG=-AI vẫn bảo thẳng hàng. Không biết làm thì đừng thể hiện