K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ABCD là hình bình hành

nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường

mà I là giao điểm của AC và BD

nên I là trung điểm chung của AC và BD

Suy ra: IB=ID

mà \(IM=\dfrac{ID}{2}\)

và \(IN=\dfrac{IB}{2}\)

nên IM=IN

Xét tứ giác AMCN có 

I là trung điểm của đường chéo AC

I là trung điểm của đường chéo MN

Do đó: AMCN là hình bình hành

Suy ra: AM//CN

11 tháng 11 2017

Thánh biết làm rồi còn hỏi???

11 tháng 11 2017

Mk chỉ đưa ý kiến , sai thì bổ sung nhé

Xét tam giác AIM và tam giác CIN có:
IM = IN (gt)
góc AIM = góc CIN
AI = CI (gt)
Do đó tam giác AIM = tam giác CIN (c.g.c)
suy ra: góc AIM = CIN
mà 2 góc này ở vị trí so le trong
Doa đó AM // CN

27 tháng 9 2018
2 tháng 9 2021

AECF là hình bình hành => EN // AM

E là trung điểm của AB => N là trung điểm của BM, do đó MN = NB.

Tương tự, M là trung điểm của DN, do đó DM = MN.

a: Xét tứ giác DEBF có 

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

b: Xét ΔCDM có 

F là trung điểm của CD

FN//DM

Do đó: N là trung điểm của CM

Suy ra: NM=NC(1)

Xét ΔANB có

E là trung điểm của AB

EM//NB

Do đó: M là trung điểm của AN

Suy ra: AM=MN(2)

từ (1) và (2) suy ra AM=MN=NC