Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ABCD là hình bình hành
nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường
mà I là giao điểm của AC và BD
nên I là trung điểm chung của AC và BD
Suy ra: IB=ID
mà \(IM=\dfrac{ID}{2}\)
và \(IN=\dfrac{IB}{2}\)
nên IM=IN
Xét tứ giác AMCN có
I là trung điểm của đường chéo AC
I là trung điểm của đường chéo MN
Do đó: AMCN là hình bình hành
Suy ra: AM//CN
Mk chỉ đưa ý kiến , sai thì bổ sung nhé
Xét tam giác AIM và tam giác CIN có:
IM = IN (gt)
góc AIM = góc CIN
AI = CI (gt)
Do đó tam giác AIM = tam giác CIN (c.g.c)
suy ra: góc AIM = CIN
mà 2 góc này ở vị trí so le trong
Doa đó AM // CN
AECF là hình bình hành => EN // AM
E là trung điểm của AB => N là trung điểm của BM, do đó MN = NB.
Tương tự, M là trung điểm của DN, do đó DM = MN.
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: Xét ΔCDM có
F là trung điểm của CD
FN//DM
Do đó: N là trung điểm của CM
Suy ra: NM=NC(1)
Xét ΔANB có
E là trung điểm của AB
EM//NB
Do đó: M là trung điểm của AN
Suy ra: AM=MN(2)
từ (1) và (2) suy ra AM=MN=NC