Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ABCD là hình bình hành
nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường
mà I là giao điểm của AC và BD
nên I là trung điểm chung của AC và BD
Suy ra: IB=ID
mà \(IM=\dfrac{ID}{2}\)
và \(IN=\dfrac{IB}{2}\)
nên IM=IN
Xét tứ giác AMCN có
I là trung điểm của đường chéo AC
I là trung điểm của đường chéo MN
Do đó: AMCN là hình bình hành
Suy ra: AM//CN
AN=AB/2
CM=CD/2
mà AB=CD
nên AN=CM
Xét tứ giác ANCM có
AN//CM
AN=CM
=>ANCM là hình bình hành
=>AM//CN
Xét ΔDQC có
M là trung điểm của DC
MP//QC
=>P là trung điểm của DQ
=>DP=PQ
Xét ΔBAP có
N là trung điểm của BA
NQ//AP
=>Q là trung điểm của BP
=>BQ=QP=PD
a: Xét tứ giác BMDN có
DM//BN
DM=BN
Do đó: BMDN là hình bình hành
O là giao điểm của hai đường chéo AC,BD(gt)
=> AO=OC, OD=OB (vì ABCD là hình bình hành)
Lại có;
E là trung điểm của OD(gt)
=> OE=1/2.OD
F là trung điểm của OB(gt)
=> OF=1/2.OB
Mà OD=OB (cmt)
=> OE=OF
Tứ giác AFCE có: OA=OC(cmt) và OE=OF(cmt)
=> O là giao điểm của hai đường chéo AC,EF cắt nhau tại trung điểm mỗi đoạn
=> AFCE là hình bình hành
=> AE//CF (vì AE, CF là hai cạnh đối nhau)
Có AE//CF (cmt) => EK// CF (vì K thuộc AE)
Từ O vẽ đường thẳng cắt CD tại H sao cho OH//EK//CF
Xét tam giác DOH có: E là trung điểm của OD
EK//OH (theo cách vẽ đường thẳng OH)
=> K là trung điểm của DH
=> DK=KH (1)
Xét hình thang EKCF có: O là trung điểm của EF (theo câu a)
OH//EK//CF (theo cách vẽ đường thẳng OH)
=> H là trung điểm của KC
=> KH=HC (2)
Từ (1) và (2) => DK=KH=HC
Lại có: KC=KH+HC => KC= DK+DK (vì DK=KH=HC)
=> KC=2DK => DK=1/2KC
a: Xét tứ giác AICK có
AK//CI
AK=CI
Do đó: AICK là hình bình hành
a) + K là trung điểm của AB ⇒ AK = AB/2.
+ I là trung điểm của CD ⇒ CI = CD/2.
+ ABCD là hình bình hành
⇒ AB // CD hay AK // CI
và AB = CD ⇒ AB/2 = CD/2 hay AK = CI
+ Tứ giác AKCI có AK // CI và AK = CI
⇒ AKCI là hình bình hành.
b) + AKCI là hình bình hành
⇒ AI//KC hay MI//NC.
ΔDNC có: DI = IC, IM // NC ⇒ DM = MN (1)
+ AI // KC hay KN//AM
ΔBAM có: AK = KB, KN//AM ⇒ MN = NB (2)
Từ (1) và (2) suy ra DM = MN = NB.
Thánh biết làm rồi còn hỏi???
Mk chỉ đưa ý kiến , sai thì bổ sung nhé
Xét tam giác AIM và tam giác CIN có:
IM = IN (gt)
góc AIM = góc CIN
AI = CI (gt)
Do đó tam giác AIM = tam giác CIN (c.g.c)
suy ra: góc AIM = CIN
mà 2 góc này ở vị trí so le trong
Doa đó AM // CN