Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BEDF có
BF//ED
BF=ED
Do đó: BEDF là hình bình hành
Suy ra: BE//DF
Xét ΔAQD có
E là trung điểm của AD
EP//QD
Do đó: P là trung điểm của AQ
Suy ra: AP=PQ(1)
Xét ΔCPB có
F là trung điểm của BC
FQ//BP
Do đó: Q là trung điểm của CQ
Suy ra: CQ=PQ(2)
Từ (1) và (2) suy ra AP=PQ=QC
a: Xét tứ giác BEDF có
ED//BF
ED=BF
Do đó: BEDF là hình bình hành
Xét ΔAQD có
E là trung điểm của AD
EP//DQ
Do đó: P là trung điểm của AQ
Suy ra: AP=PQ(1)
Xét ΔCPB có
F là trung điểm của BC
FQ//PB
Do đó: Q là trung điểm của CP
Suy ra: CQ=QP(2)
Từ (1) và (2) suy ra AP=PQ=QC
a) Tương tự 1A. Ta chứng minh được A thuộc đường thẳng PQ.
b) Ta có:
PA//BM,PA= BM
AQ//MC, AQ = MC
Suy ra BCQP là hình bình hành
A B C D P Q E F
a) Có \(DE=\frac{1}{2}DA\), \(BF=\frac{1}{2}BC\).
Tứ giác ABCD là hình bình hành nên DE = BC suy ra DE = BF.
Mà DE // BF.
Vì vậy tứ giác BEDF là hình bình hành.
b) Theo chứng minh câu a tứ giác BEDF là hình bình hành suy ra BE // DF.
Xét tam giác ADQ có E là trung điểm của DA và AB // DQ nên P là trung điểm của AQ.
Vì vậy AP = PQ. (1)
Xét tam giác BCP có F là trung điểm của BC và FD // BE nên Q là trung điểm của của PC.
Vì vậy PQ = QC. (2)
Từ (1) và (2) suy ra: AP = PQ = QC.
c)Do AE // BC nên áp dụng định lý Ta-lét:
\(\frac{AP}{PB}=\frac{EP}{PB}=\frac{1}{2}\).
Suy ra \(EP=\frac{1}{2}PB\).
Mặt khác R là trung điểm của PB nên PR = RB \(=\frac{1}{2}PB\).
Từ đó suy ra \(EP=PR=RB\).
Vậy P là trung điểm của AR và ta cũng có P là trung điểm AQ nên tứ giác ARQE là hình bình hành.
Bài này mình làm xong rồi nhưng lỡ tay bấm nút hủy.
MONG CÁC BẠN
a: Xét tứ giác BEDF có
DE//BF
DE=BF
Do đó: BEDF là hình bình hành
b: Xét ΔAQD có
E là trung điểm của AD
EP//QD
Do đó: P là trung điểm của AQ
Suy ra;AP=PQ(1)
Xét ΔCPB có
F là trung điểm của BC
FQ//BP
Do đó: Q là trung điểm của CP
Suy ra: QC=PQ(2)
Từ (1) và (2) suy ra AP=PQ=QC
A B C D E F M P Q I K
a/
Vì ABCD là hình bình hành nên AB // CD => ABCD cũng là hình thang.
Ta có E và F lần lượt là trung điểm các cạnh AD và BC nên EF là đường trung bình
của hình thang ABCD => EF // AB (1)
Lại có AE // BF (2) . Từ (1) và (2) suy ra ABFE là hình bình hành (dhnb)
b/ Xét tứ giác DEBC có \(\hept{\begin{cases}DE=BF\\DE\text{//}BF\end{cases}}\) => DEBF là hình bình hành => BE // DF
Xét tam giác BCP : \(\hept{\begin{cases}BF=FC\\FQ\text{//}BP\end{cases}}\) => QF là đường trung bình => CQ = QP (3)
Tương tự với tam giác ADQ : PE là đường trung bình => AP = PQ (4)
Từ (3) và (4) => AP = PQ = QC
c/
Ta có : \(\hept{\begin{cases}IE=EM\\AE=ED\end{cases}}\) => IAMD là hình bình hành => IA // DM hay IA // CD (5)
Tương tự : \(\hept{\begin{cases}BF=FC\\MF=FK\end{cases}}\) => BKCM là hình bình hành => BK // CD (6)
Lại có AB // CD (7)
Từ (5) , (6) , (7) kết hợp cùng với tiên đề Ơ-clit ta được đpcm.
d/ Vì IAMD và BKCM là các hình bình hành (chứng minh ở câu c)
nên ta có AI = DM , BK = CM
=> AI + BK = DM + CM = CD (không đổi)
Vậy khi M di chuyển trên cạnh CD thì AI + BK không đổi.
khó đấy bạn !