K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2016

a) Ta có: AE = CG (giả thiết) mà AB = CD (cạnh đối của hình bình hành ABCD), suy ra BE = DG.
△BEF và △DGH có:
           BE = DG (chứng minh trên)
           B^=D^  (hai góc đối của hình bình hành ABCD)
do đó: △BEF = △DGH (c.g.c), suy ra EF = GH.
Chứng minh tương tự, ta có: EH = FG.
Tứ giác EFGH có các cạnh đối bằng nhau nên là hình bình hành.
b) Tứ giác ABCD là hình bình hành ...

8 tháng 10 2016

cho hình bình hành ABCD.Gọi E,F,G,H lần lượt thuộc cạnh AB,CD,EG,HF sao cho BE=DG,BF=DH.Chứng minh

a)EFGH là hình bình hành 

 b)các đường thẳng AC,DB,EG,HF đồng quy

a) Ta có: AE = CG (giả thiết) mà AB = CD (cạnh đối của hình bình hành ABCD), suy ra BE = DG.
△BEF và △DGH có:
           BE = DG (chứng minh trên)
           B^=D^  (hai góc đối của hình bình hành ABCD)
do đó: △BEF = △DGH (c.g.c), suy ra EF = GH.
Chứng minh tương tự, ta có: EH = FG.
Tứ giác EFGH có các cạnh đối bằng nhau nên là hình bình hành.
b) Tứ giác ABCD là hình bình hành ...

đúng không ?

17 tháng 1 2017

Cho hình vuông ABCD, O là giao điểm hai đường chéo AC và BD. Qua O kẻ các đường thẳng lần lượt vuông góc với AB,BC,CD,DA tại E,G,F,H.Chứng minh:

a) Bà điểm E,O,F thẳng hàng và ba điểm G,O,H thẳng hàng

b) Tứ giác EGFH lầ hình vuông

1 tháng 7 2018

anh yeu em

a: Xét ΔEBF và ΔGDH có

EB=GD

góc B=góc D

BF=DH

=>ΔEBF=ΔGDH

=>EF=gh

Xét ΔEAH và ΔGCF có

EA=GC

góc A=góc C

AH=CF

=>ΔEAH=ΔGCF

=>EH=GF

mà EF=GH

nên EHGF là hình bình hành

b: Xét tứ giác AECG có

AE//CG

AE=CG

=>AECG là hbh

=>AC cắt EG tại trung điểm của mỗi đường(1)

EFGH là hbh

=>EG cắt FH tại trung điểm của mỗi đường(2)

ABCD là hbh

=>AC cắt BD tại trung điểm của mỗi đường(3)

Từ (1), (2), (3) suy ra AC,BD,EG,FH đồng quy

1 tháng 10 2019

a,Xét ΔHAEΔHAE và ΔFCGΔFCG
Có : HAEˆ=FCGˆHAE^=FCG^ ( 2 góc đối của hình bình hành )
AE = GC ( theo gt )
AH = FC ( Vì AD = BC mà AE = GC ,theo gt )
ΔHAEΔHAE = ΔFCGΔFCG ( c.g.c )
HE = GF ( 2 cạnh tương ứng ) [1]

Xét ΔHDGΔHDG và ΔFBEΔFBE
Có : HDGˆ=FBEˆHDG^=FBE^ ( 2 góc đối của hình bình hành )
HD = BF
DG = BE ( Vì AB = DC mà HD = BF ,theo gt )
ΔHDGΔHDG = ΔFBEΔFBE ( c.g.c )
HG = EF ( 2 cạnh tương ứng ) [2]
Từ [1] và [2] EFGH là hình bình hành ( vì có các cạnh đối bằng nhau )

b, Có ABCD là hình bình hành AC cắt BD ở trung điểm mỗi đường [3]
Lại có EFGH cũng là hình bình hành EG cắt HF tại trung điểm mỗi đường[4]
Mà HBFD là hình bình hành ( vì HD // BF và HD = BF , theo gt )
HF cắt BD tại trung điểm mỗi đường [5]

Từ [3] ; [4] và [5] AC,BD,EG,FH đồng qui tại một điểm