K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

bn vẽ hình ik

11 tháng 2 2020

Cảm ơn bạn vì đã có ý giúp nhưng mình tìm được câu tương tự rồi. Cảm ơn bạn nhiều

NV
20 tháng 4 2023

Trước hết ta chứng minh bổ đề sau (nếu em chưa học)

Cho 4 điểm A; B; C; D phân biệt sao cho \(AB||CD\), khi đó ta luôn có: \(S_{\Delta ACD}=S_{\Delta BCD}\)

C/m: từ A và B lần lượt kẻ \(AH\) và \(BK\) vuông góc CD \(\Rightarrow AH||BK\Rightarrow\) tứ giác AHKB là hình chữ nhật

\(\Rightarrow AH=BK\)

Do \(\left\{{}\begin{matrix}S_{\Delta ACD}=\dfrac{1}{2}AH.CD\\S_{\Delta BCD}=\dfrac{1}{2}BK.CD\end{matrix}\right.\) mà \(AH=BK\Rightarrow S_{\Delta ACD}=S_{\Delta BCD}\) (đpcm)

Quay lại bài toán, áp dụng bổ đề trên ta có: do N thuộc BC nên \(NC||AD\Rightarrow S_{\Delta NAD}=S_{\Delta CAD}\)  (1)

Tương tự, \(AM||CD\Rightarrow S_{\Delta ACD}=S_{\Delta MCD}\) (2)

(1);(2) \(\Rightarrow S_{\Delta NAD}=S_{\Delta MCD}\)

Từ D lần lượt kẻ \(DE\perp AN\) và \(DF\perp CM\)

\(\Rightarrow\left\{{}\begin{matrix}S_{\Delta NAD}=\dfrac{1}{2}DE.AN\\S_{\Delta MCD}=\dfrac{1}{2}DF.CM\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}S_{\Delta NAD}=S_{\Delta MCD}\\AN=CM\end{matrix}\right.\) \(\Rightarrow DE=DF\)

\(\Rightarrow\Delta_VDEK=\Delta_VDFK\left(ch-cgv\right)\)

\(\Rightarrow\widehat{EKD}=\widehat{FKD}\) hay KD là phân giác

NV
20 tháng 4 2023

loading...

15 tháng 12 2021

undefined

15 tháng 12 2021

a) Vì ABCD là hình bình hành nên

AB=CD=2a, AD=BC=a

ta có: M,N là trung điểm của AB và CD

=> DN=1/2CD=a

=> AD=DN

Vậy tam giác ADN cân tại D(đpcm)

=> DAN=DNA

b) Ta có: AB//CD => AND=MAN(So le trong)

=> DAN=MAN

=>AN là tia phân giác của góc BAD

 

13 tháng 11 2017

A B M C N D P Q

a) Do AB = 2a, AD = A nên AB = 2AD.

Lại có ABCD là hình bình hành nên AB = CD. Vậy thì \(DN=\frac{CD}{2}=\frac{AB}{2}=AD\)

Xét tam giác ADN có DA = DN nên ADN là tam giác cân tại D.

Do tam giác ADN cân tại D nên \(\widehat{DAN}=\widehat{DNA}\) 

Do AB//DC nên \(\widehat{BAN}=\widehat{DNA}\) (Hai góc so le trong)

Vậy nên \(\widehat{DAN}=\widehat{BAN}\) hay AN là phân giác góc \(\widehat{BAD}\)

b) Ta có \(MB=\frac{1}{2}AB;DN=\frac{1}{2}DC\Rightarrow\) MB song song và bằng ND.

Xét tứ giác MDNB có MB song song và bằng ND hay MDNB là hình bình hành.

Vậy thì MD // NB

c) Tương tự câu b, ta chứng minh được AMCN là hình bình hành hay AN // MC

Xét tứ giác MPNQ có MP//QN và MQ//PN nên MPNQ là hình bình hành.

Xét tứ giác AMND có AM song song và bằng ND hay AMND là hình bình hành.

Lại có AD = AM nên AMND là hình thoi. Suy ra AN vuông góc DM hay \(\widehat{MPN}=90^o\) .

Xét hình bình hành MPNQ có \(\widehat{MPN}=90^o\) nên MPNQ là hình chữ nhật.

24 tháng 6 2018

24 tháng 10 2022

chép mạng :))