Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : AD // CK => \(\frac{MK}{MD}=\frac{CM}{AM}\left(1\right)\)
CD // AN => \(\frac{MD}{MN}=\frac{CM}{AM}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{MK}{MD}=\frac{MD}{MN}\Rightarrow MD^2=MK.MN\)
b) Sai đề
Em tham khảo nha.
Coi AB = 1, DC = k thì \(\frac{DO}{OB}=\frac{DC}{AB}=k\Rightarrow\frac{DO}{DB}=\frac{k}{k+1}\)
\(\Rightarrow OE=OF=\frac{k}{k+1}\Rightarrow EF=\frac{2k}{k+1}\)
Ta có \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{1}+\frac{1}{k}=\frac{k+1}{k}\)
\(\frac{2}{EF}=\frac{2}{\frac{2k}{k+1}}=\frac{k+1}{k}\)
Vậy nên \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)
Xét ΔADNΔADN và ΔMBAΔMBA có:
ˆDAN=ˆBMADAN^=BMA^ (AB//DC nên hai góc ở vị trí so le trong bằng nhau)
ˆAND=ˆMABAND^=MAB^ (hai góc ở vị trí so le trong)
⇒ΔADN∼ΔMBA⇒ΔADN∼ΔMBA (g.g)
⇒DNBA=DABM⇒DNBA=DABM (hai cạnh tương ứng)
⇒BM.DN=BA.DA⇒BM.DN=BA.DA mà BA,DABA,DA là hai cạnh của hình bình hành, hình bình hành cố định nên BM.DNBM.DN cố định (đpcm)
mình nghĩ dc câu a thôi
lưu ý : do DM/DN + DM/DK =1 nên DM<DN , DM <DK
b) theo câu a to có: DM^2 =MN.MK=>DM/MN=MK/DM => DM/(DM+MN) =MK/(MK+DM) => DM/DN =MK/DK =>DM/DN + DM/DK =MK/DK + DM/DK =>DM/DN + DM/Dk =(MK+DM)/DK=DK/DK = 1 (đpcm) A B C D M N K a) do AB//CD (tgABCD là hbh)nên tg AMN đ.dạng vs tgCMD =>MN/DM =AM/CM (1) mặt khác: AD//BC( tgABCD là hbh)=>tg AMD đ.dạng vs tgCMK (T.Lét) (T.Lét) =>DM/MK =AM/CM (2) từ (1) và (2) =>MN/DM=DM/MK=>DM^2 =MN.MK
a) Ta có AB // CD (ABCD hbh) -> AMN đồng dạng CMD (talet)
-> \(\frac{MN}{DM}=\frac{AM}{CM}\)(1)
Lại có AD // BC (ABCD hbh) -> AMD đồng dạng CKM (talet)
-> \(\frac{DM}{MK}=\frac{AM}{CM}\)(2)
(1) (2) -> \(\frac{MN}{DM}=\frac{DM}{MK}=DM^2=MK.MN\)
b) Ta có \(\frac{DM}{MK}=\frac{MK}{DM}\left(cma\right)\)
\(\Rightarrow\frac{DM}{DM+MN}=\frac{MK}{MK+DM}\)
\(\Rightarrow\frac{DM}{DN}=\frac{MK}{DK}\)
\(\Rightarrow\frac{DM}{DN}+\frac{DM}{DK}=\frac{MK}{DK}+\frac{DM}{DK}\)
\(\frac{DM}{DN}+\frac{DM}{DK}=\frac{MK+DM}{DK}=\frac{DK}{DK}=1\left(đpcm\right)\)