Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để DOFA là hình bình hành <=> DO=AF( vì có AF//DO)
<=> 2EO=DO( vì EO là đượng trung bình nên 2EO=AF)
<=> E là trung điểm của dO
cậu tự vẽ hình nhé
a) ta có O,E lần lượt là trung điểm của AC,CF
nên OE là đường trung bình của tam giác AFC => OE//AF =>BD//AF
a: Xét ΔABC có
D là trung điểm của BC
F là trung điểm của AC
Do đó: DF là đường trung bình của ΔABC
Suy ra: DF//AB
hay ABDF là hình thang
a: Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
b: Hình bình hành AMND có AM=AD
nên AMND là hình thoi
c: Xét tứ giác ANKQ có
D là trung điểm của NQ
D là trung điểm của AK
Do đó: ANKQ là hình bình hành
Hình bạn tự vẽ nha
a) CMR Tứ giác ABEC là hình bình hành
Vì ABCD là hcn (gt) => AB=CD và AB//CD (t/c hcn)
=> AB=CE và AB//CE ( CE= DC, E \(\in\) CD)
=> tứ giác ABEC là hình bình hành(dhnb)
b) BOCF là hình gì
Vì ABEC là hbh (cmt) => AC=BE và AB//BE 9T/c hbh)
=> 1/2 AC=1/2BE và OC//BF (1)
<=> OC= BF(2)
Từ (1) và (2) => BOCF là hbh (dhnb)
mà OB=OC (t/c đừng chéo hcn)
=> BOCF là hình thoi (dhnb)
c) DOFE là hình thang cân
Vì AC= BE ( ABEC là hbh)
mà AC =BD ( T/c hcn)
=> BE= BD => Tam giác BED cân tại B (đ/n)
=> BDE= BED (t/c tam giác cân) (1)
Vì C là trung điểm DE ( D đx E qua C) => BC là đường trung tuyến của tam giác ABC cân => BC là đương cao ( t/c các đường trong tam giác cân) => BC _l_ DE
mà BC_l_ OF (đg chéo hình thoi)
=> DE//OF ( từ _l_ -> //) (2)
Từ (1) và (2)=> OFDE là hình thang cân (dhnb hthang cân)
a: Ta có: BC=AD(ABCD là hình bình hành)
\(BE=EC=\dfrac{BC}{2}\)(E là trung điểm của BC)
\(AF=FD=\dfrac{AD}{2}\)(F là trung điểm của AD)
Do đó: BE=EC=AF=FD
Xét tứ giác ABEF có
BE//AF
BE=AF
Do đó: ABEF là hình bình hành
Hình bình hành ABEF có \(BE=BA\left(=\dfrac{BC}{2}\right)\)
nên ABEF là hình thoi
b: Ta có: BE=BA
BA=BI
Do đó: BE=BI
Ta có: BE//AF
=>\(\widehat{IBE}=\widehat{IAF}\)(hai góc đồng vị)
mà \(\widehat{IAF}=60^0\)
nên \(\widehat{IBE}=60^0\)
Xét ΔBIE có BI=BE và \(\widehat{IBE}=60^0\)
nên ΔBIE đều
=>\(\widehat{I}=60^0=\widehat{A}\)
Xét tứ giác AIEF có EF//AI
nên AIEF là hình thang
Hình thang AIEF có \(\widehat{EIA}=\widehat{FAB}\left(cmt\right)\)
nên AIEF là hình thang cân
Cho hình bình hành ABCD có tâm đối xứng là O, E là điểm bất kỳ trên đoạn OD. Gọi F là điểm đối xứng của C qua E. Tứ giác ODFA là hình gì?
A. Hình thang B. Hình bình hành
C. Hình thang cân D. Hình thang vuông
tứ giác ODFA là hình bình hành
HOK TỐT