Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABH và tam giác CID có :
AB = CD ( gt )
\(\widehat{AHB}=\widehat{CID}=90^0\)
\(\widehat{BAH}=\widehat{ICD}\)
\(\Rightarrow\)\(\Delta ABH=\Delta CID\left(g-c-g\right)\)
\(\Rightarrow\)\(AH=CI\)
c) \(CM\perp AB\Rightarrow CM\perp CD\)
\(CN\perp AD\Rightarrow CN\perp BC\)
Xét tam giác BCM và tam giác CDN có :
\(\widehat{BMC}=\widehat{CND}\)
\(\widehat{MCB}=\widehat{DCN}\)
Suy ra tam giác BCM = tam giác CDN
\(\Rightarrow\)\(\frac{BC}{DC}=\frac{CM}{CN}\)
mà BC = AD và DC = AB
Suy ra AB.CM = CN.AD
a: Xét ΔHBA vuông tại H và ΔIDC vuông tại I có
BA=DC
góc HAB=góc ICD
=>ΔHBA=ΔIDC
=>AH=IC
b: Xét tứ giác BHDI có
BH//DI
BH=DI
=>BHDI là hình bình hành
c; S CAB=AB*CM/2
S DAC=1/2*CN*AD
mà ΔCAB=ΔDAC
nên AB*CM=CN*AD
Xét ΔAHB vuông tại H và ΔAMC vuông tại M có
góc HAB chung
=>ΔAHB đồng dạng với ΔAMC
=>AH/AM=AB/AC
=>AB*AM=AH*AC
Xét ΔHCB vuông tại H và ΔNAC vuông tại N có
góc HCB=góc NAC
=>ΔHCB đồng dạng với ΔNAC
=>CB/AC=HC/NA
=>CB*NA=HC*AC=AD*AN
=>AD*AN+AB*AM=AC^2
a: Xét ΔABH vuông tại H và ΔACB vuông tại B có
góc BAH chung
Do đó: ΔABH đồng dạng với ΔACB
b: ΔABC vuông tại B
=>AC^2=AB^2+BC^2=100
=>AC=10cm
ΔBAC vuông tại B có BH là đường cao
nên AH*AC=AB^2 và BH*AC=BA*BC
=>AH*10=36 và BH*10=6*8=48
=>HA=3,6cm; BH=4,8cm
c: Xét ΔHBC có HE/HB=HK/HC
nên EK//BC
=>góc HEK=góc HBC=góc HAB
Xét ΔHEK vuông tại H và ΔHAB vuông tại H có
góc HEK=góc HAB
Do đó: ΔHEk đồng dạng với ΔHAB
=>HE/HA=EK/AB
=>HE*AB=EK*HA
a: S CAB=1/2*CM*AB
S CAD=1/2*CN*AD
mà ΔCAB=ΔCAD
nên CM*AB=CN*AD
b: Xét ΔAID vuông tại I và ΔANC vuông tại N có
góc IAD chung
=>ΔAID đồng dạng với ΔANC
=>AI/AN=AD/AC
=>AI*AC=AN*AD
Xét ΔHCB vuông tại H và ΔNAC vuông tại N có
góc HCB=góc NAC
=>ΔHCB đồng dạng với ΔNAC
=>HC/NA=CB/AC
=>CB*NA=HC*AC=AD*AN
=>AD*AN+AB*AM=AC^2
a. Xét tam giác ABH và tam giác CDI vuông lần lượt tại H và I có:
AB = CD ( gt)
góc ABH = ICD (gt)
Do đó tam giác ABH = CDI ( cạnh huyền- góc nhọn)
=> AH = CI ( 2 cạnh tương ứng)
Xét tam giác ABH và tam giác ACM có:
góc A chung
góc AHB = góc AMC = 90o
Do đó tam giác ABH đồng dạng tam giác ACM ( g-g)