K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

a. Xét tam giác ABH và tam giác CDI vuông lần lượt tại H và I có:

AB = CD ( gt)

góc ABH = ICD (gt)
Do đó tam giác ABH = CDI ( cạnh huyền- góc nhọn)

=> AH = CI ( 2 cạnh tương ứng)

22 tháng 2 2018

Xét tam giác ABH và tam giác ACM có:

góc A chung

góc AHB = góc AMC = 90o

Do đó tam giác ABH đồng dạng tam giác ACM ( g-g)

22 tháng 2 2018

a) Xét tam giác ABH và tam giác CID có :

AB = CD ( gt )

\(\widehat{AHB}=\widehat{CID}=90^0\)

\(\widehat{BAH}=\widehat{ICD}\)

\(\Rightarrow\)\(\Delta ABH=\Delta CID\left(g-c-g\right)\)

\(\Rightarrow\)\(AH=CI\)

c) \(CM\perp AB\Rightarrow CM\perp CD\)

\(CN\perp AD\Rightarrow CN\perp BC\)

Xét tam giác BCM và tam giác CDN có :

\(\widehat{BMC}=\widehat{CND}\)

\(\widehat{MCB}=\widehat{DCN}\)

Suy ra tam giác BCM = tam giác CDN

\(\Rightarrow\)\(\frac{BC}{DC}=\frac{CM}{CN}\)

mà BC = AD và DC = AB

Suy ra AB.CM = CN.AD

a: Xét ΔHBA vuông tại H và ΔIDC vuông tại I có

BA=DC

góc HAB=góc ICD

=>ΔHBA=ΔIDC

=>AH=IC

b: Xét tứ giác BHDI có

BH//DI

BH=DI

=>BHDI là hình bình hành

c; S CAB=AB*CM/2

S DAC=1/2*CN*AD

mà ΔCAB=ΔDAC

nên AB*CM=CN*AD

Xét ΔAHB vuông tại H và ΔAMC vuông tại M có

góc HAB chung

=>ΔAHB đồng dạng với ΔAMC

=>AH/AM=AB/AC

=>AB*AM=AH*AC

Xét ΔHCB vuông tại H và ΔNAC vuông tại N có

góc HCB=góc NAC

=>ΔHCB đồng dạng với ΔNAC

=>CB/AC=HC/NA

=>CB*NA=HC*AC=AD*AN

=>AD*AN+AB*AM=AC^2

a: Xét ΔABH vuông tại H và ΔACB vuông tại B có

góc BAH chung

Do đó: ΔABH đồng dạng với ΔACB

b: ΔABC vuông tại B

=>AC^2=AB^2+BC^2=100

=>AC=10cm

ΔBAC vuông tại B có BH là đường cao

nên AH*AC=AB^2 và BH*AC=BA*BC

=>AH*10=36 và BH*10=6*8=48

=>HA=3,6cm; BH=4,8cm

c: Xét ΔHBC có HE/HB=HK/HC

nên EK//BC

=>góc HEK=góc HBC=góc HAB

Xét ΔHEK vuông tại H và ΔHAB vuông tại H có

góc HEK=góc HAB

Do đó: ΔHEk đồng dạng với ΔHAB

=>HE/HA=EK/AB

=>HE*AB=EK*HA

23 tháng 3 2017

k giúp mk rồi mk làm cho

2 tháng 4 2017

mk cũng đang mắc câu này,bạn bk chưa trả lời giúp mk đi

a: S CAB=1/2*CM*AB

S CAD=1/2*CN*AD

mà ΔCAB=ΔCAD

nên CM*AB=CN*AD

b: Xét ΔAID vuông tại I và ΔANC vuông tại N có

góc IAD chung

=>ΔAID đồng dạng với ΔANC

=>AI/AN=AD/AC

=>AI*AC=AN*AD

Xét ΔHCB vuông tại H và ΔNAC vuông tại N có

góc HCB=góc NAC

=>ΔHCB đồng dạng với ΔNAC

=>HC/NA=CB/AC

=>CB*NA=HC*AC=AD*AN

=>AD*AN+AB*AM=AC^2