Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì O là giao điểm 2 đg chéo của hbh ABCD nên \(OB=OD\)
Mà M,N là trung điểm OB,OD nên \(OM=ON\)
Mà O là giao điểm 2 đg chéo của hbh ABCD nên \(OA=OC\)
Do đó AMCN là hbh (do O là trung điểm AC và MN)
b, Vì AMCN là hbh nên AN//CM hay AE//CF
Mà ABCD là hbh nên AD//BC hay AF//CE
Do đó AECF là hbh nên \(AE=CF\)
Do AECF là hbh mà O là trung điểm AC nên cũng là trung điểm EF
Vậy O;E;F thẳng hàng
a: Xét tứ giác AECF có
O là trung điểm của AC
O là trung điểm của FE
Do đó: AECF là hình bình hành
Xét tam giác ABC và BAD có :
AB : chung
\(\widehat{BAD}=\widehat{ABC}\)
AD = BC
( ABCD là hình thang cân )
\(\Rightarrow\Delta ABC=\Delta BAD\)
\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)
\(\Delta AOB\)CÓ : \(\widehat{OAB}=\widehat{OBA}\Rightarrow\Delta AOB\)cân tại O nên OA = OB
a: Xét tứ giác AMCN có
O là trung điểm của AC
O là trung điểm của MN
Do đó: AMCN là hình bình hành
SOBN=SOD
k nha
Chứng minh SOBN = SOD