K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔIDC vuông tại I và ΔKDB vuông tại K có

góc IDC chung

=>ΔIDC đồng dạng với ΔKDB

b: Xét ΔBHA vuông tại H và ΔBKC vuông tại K co

góc BAH=góc BCK

=>ΔBHA đồng dạng với ΔBKC

=>BH/BK=BA/BC

=>BK*BA=BH*BC

a: Xét ΔBMC vuông tại M và ΔDNC vuông tại N có

góc B=góc D

=>ΔBMC đồng dạng vớiΔDNC

b: Bạn ghi lại đề đi bạn

1: Xet ΔABH và ΔHDK có

góc ABH=góc HDK

góc AHB=góc HKD

=>ΔABH đồng dạng với ΔHDK

=>AB/HD=BH/DK=BN/DM

Xet ΔABN và ΔHDM có

góc ABN=góc HDM

AB/HD=BN/DM

=>ΔABN đồng dạng vơi ΔHDM

b: ΔOBN đồng dạng với ΔKDH

=>OB/KD=BN/DH

=>OB/BN=KD/DH

=>OB/2BN=DM/DH

=>OB/BH=DM/DH

Xét ΔOBH và ΔMDH có

góc OBH=góc MDH

OB/BH=MD/DH

=>ΔOBH đồng dạng với ΔMDH

=>góc OHB=góc DHM

=>O,H,M thẳng hàng

 

14 tháng 12 2023

Bài 3:

a: Ta có: AD+DB=AB

AE+EC=AC

mà DB=EC và AB=AC

nên AD=AE

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

Xét tứ giác BDEC có DE//BC

nên BDEC là hình thang

Hình thang BDEC có \(\widehat{DBC}=\widehat{ECB}\)

nên BDEC là hình thang cân

b: Để BD=DE=EC thì BD=DE và DE=EC

BD=DE thì ΔDBE cân tại D

=>\(\widehat{DBE}=\widehat{DEB}\)

mà \(\widehat{DEB}=\widehat{EBC}\)(hai góc so le trong, DE//BC)

nên \(\widehat{DBE}=\widehat{EBC}\)

=>\(\widehat{ABE}=\widehat{EBC}\)

=>BE là phân giác của góc ABC

=>E là chân đường phân giác kẻ từ B xuống AC

Xét ΔEDC có ED=EC

nên ΔEDC cân tại E

=>\(\widehat{EDC}=\widehat{ECD}\)

mà \(\widehat{EDC}=\widehat{DCB}\)(hai góc so le trong, DE//BC)

nên \(\widehat{ECD}=\widehat{DCB}\)

=>\(\widehat{ACD}=\widehat{BCD}\)

=>CD là phân giác của góc ACB

=>D là chân đường phân giác từ C kẻ xuống AB

Bài 2:

a: Ta có: ABCD là hình bình hành

=>AB//CD và AB=CD(1)

Ta có: M là trung điểm của AB

=>\(AM=MB=\dfrac{AB}{2}\left(2\right)\)

Ta có: N là trung điểm của CD

=>\(NC=ND=\dfrac{CD}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra AM=MB=NC=ND

Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

b: Ta có AMCN là hình bình hành

=>AN//CM

Xét ΔDFC có

N là trung điểm của DC

NE//FC

Do đó: E là trung điểm của DF

=>DE=EF(4)

Xét ΔABE có

M là trung điểm của BA

MF//AE

Do đó: F là trung điểm của BE

=>BF=FE(5)

Từ (4) và (5) suy ra BF=FE=ED

a: Xét tứ giác AKCI có

AK//CI

AI//CK

Do đó: AKCI là hình bình hành

21 tháng 10 2021

a, Xét tg AHD và tg CIB có \(AD=BC;\widehat{AHD}=\widehat{CIB}=90^0;\widehat{ADH}=\widehat{CBI}\left(so.le.trong\right)\) nên \(\Delta AHD=\Delta CIB\left(ch-gn\right)\)

Do đó \(AH=CI\)

Mà AH//CI (⊥BD) nên AHCI là hbh

b, Vì AHCI là hbh mà M là trung điểm HI nên cũng là trung điểm AC

Do đó A đối xứng C qua M

24 tháng 12 2023

a: loading...

b: Xét ΔBMC có

BK,CI là các đường cao

BK cắt CI tại E

Do đó: E là trực tâm của ΔBMC

=>ME\(\perp\)BC

mà AB\(\perp\)BC

nên ME//AB

Xét ΔKAB có

M là trung điểm của KA

ME//AB

Do đó: E là trung điểm của BK

=>BE=EK

c: Xét ΔKAB có

M,E lần lượt là trung điểm của KA,KB

=>ME là đường trung bình của ΔKAB

=>\(ME=\dfrac{AB}{2}\)

mà AB=CD(ABCD là hình chữ nhật)

và \(NC=\dfrac{CD}{2}\)(N là trung điểm của CD)

nên ME=NC

Ta có: ME//AB

CD//AB

Do đó: ME//CD

Xét tứ giác MNCE có

ME//CN

ME=CN

Do đó: MNCE là hình bình hành

d: ta có: MNCE là hình bình hành

=>MN//CE

mà CE\(\perp\)MB

nên MN\(\perp\)MB