Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAIB vuông tại I và ΔAEC vuông tại E có
góc IAB chung
=>ΔAIB đồng dạng vơi ΔAEC
b: ΔAIB đồng dạng với ΔAEC
=>AI/AE=AB/AC
=>AI/AB=AE/AC
=>ΔAIE đồng dạng với ΔABC và AB*AE=AI*AC
c: Xét ΔFAC vuông tại F và ΔICB vuông tại I có
góc FAC=góc ICB
=>ΔFAC đồng dạng với ΔICB
=>AF/IC=CA/CB
=>AF*CB=CA*IC
=>AB*AE+AF*CB=AC^2
b: Xét ΔDKO vuông tại K và ΔBHO vuông tại H có
OD=OB
\(\widehat{DOK}=\widehat{BOH}\)
Do đó: ΔDKO=ΔBHO
Suy ra: DK=BH
Xét tứ giác BKDH có
DK//BH
DK=BH
Do đó: BKDH là hình bình hành
Kẻ DH,BK lần lượt vuông góc với AC
Xét ΔMEA vuông tại E và ΔBKA vuông tại K có
góc MAE chung
=>ΔMEA đồng dạng với ΔBKA
=>ME/BK=MA/BA
Xét ΔMFA vuông tại F và ΔDHA vuông tại H có
góc DAH chung
=>ΔMFA đồng dạng vơi ΔDHA
=>MF/DH=MA/DA
=>ME/MF=BK/DH:(MA/BA:MA/DA)=1*(1/BA:1/DA)=AD/AB
a: Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: Xét ΔABK vuông tại K và ΔACI vuông tại I có
góc BAK chung
Do đó: ΔABK\(\sim\)ΔACI
Suy ra: AB/AC=AK/AI
hay \(AB\cdot AI=AK\cdot AC\)
c: Xét ΔAIK và ΔACB có
AI/AC=AK/AB
góc A chung
Do đó: ΔAIK\(\sim\)ΔACB
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
=>AMHN là hình chữ nhật
b: Ta có: AMHN là hình chữ nhật
=>AM//HN và AM=HN
Ta có: AM//HN
N\(\in\)HK
Do đó: AM//KN
Ta có: AM=HN
HN=KN
Do đó: AM=KN
Xét tứ giác AMNK có
AM//NK
AM=NK
Do đó: AMNK là hình bình hành