K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

hình bạn tự vẽ nhé

a) vì A=45o và AB=BD

=>ABD là tam giác vuông cân

=>AD2=AB2+BD2

=>AD2=182+182

=>AD2=648

=>AD=\(18\sqrt{2}\)

b) ABD là tam giác vuông cân ; AB //CD

=>ABD=BDC=90o

=>BD là đường cao của ABCD

Vậy diện tích vủa hình bình hành

AB.BD=18.18=324

22 tháng 8 2016

Kẻ \(BH\) 

 vuông cân tại H

\(\Rightarrow AH=HB\)

Áp dụng định lí py-ta-go vào tg ABH tính được : \(AH\approx12,73\)

Mặt khác : \(AB=AD\) 

\(\Rightarrow\Delta ABD\) cân 

\(\Rightarrow BH\) là đường trung tuyến

\(\Rightarrow AD=2AH=25,46\)

Ta có : \(S_{ABCD}=2S_{ABD}=2.\frac{1}{2}.AD.AB.sinA\approx324,053\)

 

 

 

 

24 tháng 8 2016

sao cái đề cho AB mà tính AB.tui cũng ghi zậy sợ ghi đề sai mà thấy bà cũng ghi zậy.....SAO GIỜ?

8 tháng 8 2021

Ta có AB//CD 

 \(\Rightarrow\widehat{DAB}+\widehat{ADC}=180\\ \Rightarrow\widehat{ADC}+135=180\\ \Rightarrow\widehat{ADC}=45\)

Ta có \(\sin D=\sin45=\dfrac{AH}{AD}=\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow\dfrac{AH}{15}=\dfrac{\sqrt{2}}{2}\left(cm\right)\\ \Rightarrow AH=\dfrac{15\sqrt{2}}{2}\left(cm\right)\\ \Rightarrow S_{ABCD}=AB\cdot AH=18\cdot\dfrac{15\sqrt{2}}{2}=135\left(cm^2\right)\)

 

 

9 tháng 8 2021

kết quả cuối cx sai r

 

29 tháng 9 2018

cái loz

13 tháng 8 2016

GIẢI: 
a) Chứng minh tam giác CKH đồng dạng tam giác BCA 
AKC^ + ABC^ = 2v => AKCH nội tiếp 
=> CHK^ = CAB^ (1) ( cùng chắn cung CK) 
CKH^ = CAH^ (2) ( cùng chắn cung CH) 
CAH^ = ABC^ (3) ( so le trong) 
(2) và (3) => CKH^ = ACB^ (4) 
(1) và (4) => ΔCKH ~ ΔBCA (g.g) 

b) Chứng minh HK=AC.sinBAD 
ΔCKH ~ ΔBCA =>HK/AC = CH/AB = CH/CD = sin(CDH^) = sin(BAD^) ( đồng vị) 
=> HK = AC.sin(BAD^) 

c) Tính diện tích tứ giác AKCH nếu góc BAD = 60 độ, AB=4cm, AD=5cm 
AB = CD = 4 
CDH^ = BAD^ = 60* 
=> CH = 4√3/2 = 2√3 ( đường cao tam giác đều cạnh = 4) 
DH = CD/2 = 4/2 = 2 
=> AH = AD + DH = 5 + 2 = 7 
AD = BC = 5 
CBK^ = BAD^ = 60* 
=> CK = 5.√3/2 
BK = BC/2 = 5/2 
=> AK = AB + BK = 4 + 5/2 = 13/2 
S(AKCH) = S(ACK) + S(ACH) = AK.CK/2 + AH.CH/2 
= (13/2).( 5.√3/2)/2 + 7.(2√3)/2 = 732√3/8 

chúc bạn học tốt

DD
6 tháng 7 2021

Xét tam giác \(ABD\)vuông tại \(A\):

\(BD^2=AB^2+AD^2\)(định lí Pythagore) 

\(=4^2+10^2=116\)

\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)

Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)

Suy ra \(ABDE\)là hình bình hành. 

\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).

Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):

\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)

\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)

\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)

Hạ \(BH\perp CD\).

\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)

\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)

9 tháng 8 2021

giúp mình với