K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2021

em nào địt ko

19 tháng 8 2018

a)  ABCD là hình bình hành có O là giao AC và BD

=>  OA=OC;     OB = OD  

M, N lần lượt là trung điểm OB,OD  =>  OM = 1/2 OB;    ON = 1/2 OD

suy ra:OM = ON

Tứ giác AMCN có OA=OC;  OM = ON

=>  AMCN là hình bình hành

b) Tứ giác AECF có: AE // CF;   AF // CE

=>  AECF là hình bình hành

mà O là trung điểm AC

=>  AC và EF giao tại O

Vậy AC, BD, EF  đồng quy tại O

19 tháng 8 2018

a) Tứ giác ABCD có O là giao điểm của AC và BD

=>  OA = OC; 

và  OB = OD  (1)

M là trung điểm OB  =>  OM = 1/2 OB  (2)

N là trung điểm OD => ON = 1/2 OD     (3)

Từ (1),  (2) và (3) suy ra: OM = ON

Tứ giác AMCN có: OA = OC;  OM = ON

suy ra: AMCN là hình bình hành

b)  Tứ giác AECF có:  AE // CF;   AF // CE

=>  AECF là hình bình hành

mà O là trung điểm AC

=>  AC và EF  giao tại O

Vậy AC, BD, EF đồng quy tại O

19 tháng 8 2018

a)  ABCD là hình bình hành có O là giao AC và BD

=>  OA=OC;     OB = OD  

M, N lần lượt là trung điểm OB,OD  =>  OM = 1/2 OB;    ON = 1/2 OD

suy ra:OM = ON

Tứ giác AMCN có OA=OC;  OM = ON

=>  AMCN là hình bình hành

b) Tứ giác AECF có: AE // CF;   AF // CE

=>  AECF là hình bình hành

mà O là trung điểm AC

=>  AC và EF giao tại O

Vậy AC, BD, EF  đồng quy tại O

23 tháng 8 2018

a) Vì ABCD là hình thoi(gt). Mà AC và BD cắt nhau tại O

=> O là trung điểm của AC và BD (t/c của hình bình hành)

=> OB=OD. Mà BE=DF(gt)

=> OB-BE=OD-DF => OE=OF. Mà O nằm giữa E và F

=> O là trung điểm của EF

Xét tứ giác AECF có: AC cắt EF tại O

Mà O là trung điểm của AC( c/m trên )

O là trung điểm của EF( c/m trên )

=> AECF là hình bình hành (Tứ giác có 2 đ/c cắt nhau tại trung điểm của mỗi đg là hình bình hành)

b) Để AECF là hình thoi => \(AC\perp EF\) tại O

=> \(AC\perp BD\) tại O \(\left(E,F\in\left(O\right)\right)\)

Xét hình bình hành ABCD có: \(AC\perp BD\) tại O (c/m trên)

=> ABCD là hình thoi (Hình bình hành có 2 đ/c vuông góc là hình thoi)

Vậy để AECF là hình thoi thì ABCD là hình thoi

26 tháng 7 2021

a) Vì ABCD là hình thoi(gt). Mà AC và BD cắt nhau tại O

=> O là trung điểm của AC và BD (t/c của hình bình hành)

=> OB=OD. Mà BE=DF(gt)

=> OB-BE=OD-DF => OE=OF. Mà O nằm giữa E và F

=> O là trung điểm của EF

Xét tứ giác AECF có: AC cắt EF tại O

Mà O là trung điểm của AC( c/m trên )

O là trung điểm của EF( c/m trên )

=> AECF là hình bình hành (Tứ giác có 2 đ/c cắt nhau tại trung điểm của mỗi đg là hình bình hành)

b) Để AECF là hình thoi => AC⊥EFAC⊥EF tại O

=> AC⊥BD tại O (E,F∈(O)

Xét hình bình hành ABCD có: AC⊥BDAC⊥BD tại O (c/m trên)

=> ABCD là hình thoi (Hình bình hành có 2 đ/c vuông góc là hình thoi)

Vậy để AECF là hình thoi thì ABCD là hình thoi