K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2018

Dựng BG ⊥ AC.

Xét ΔBGA và ΔCEA, ta có:

∠ (BGA) =  ∠ (CEA) =  90 0

∠ A chung

BGA đồng dạng CEA(g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

AB.AE = AC.AG (1)

Xét  △ BGC và  △ CFA, ta có:

∠ (BGC) =  ∠ (CFA) = 90 0

∠ (BCG) =  ∠ (CAF) (so le trong vì AD //BC)

△ BGC đồng dạng △ CFA (g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ⇒ BC.AF = AC.CG

Mà BC = AD (tính chất hình bình hành)

Suy ra: AD.AF = AC.CG (2)

Cộng từng vế đẳng thức (1) và (2) ta có:

AB.AE + AD.AF = AC.AG + AC.CG

AB.AE + AD.AF= AC(AG + CG)

Mà AG + CG = AC nên AB.AE + AD.AF =  A C 2

13 tháng 3 2022

 

Dựng BG ⊥ AC.

Xét ∆ BGA và ∆ CEA, ta có:

ˆBGA=ˆCEA=90∘BGA^=CEA^=90∘

ˆAA^ chung

Suy ra: ∆ BGA đồng dạng ∆ CEA (g.g)

Suy ra: ABAC=AGAEABAC=AGAE

Suy ra: AB.AE = AC.AG   (1)

Xét ∆ BGC và ∆ CFA, ta có:

ˆBGC=ˆCFA=90∘;BGC^=CFA^=90∘

ˆBCG=ˆCAF;BCG^=CAF^  (so le trong vì AD // BC)

Suy ra: ∆ BGC đồng dạng ∆ CFA (g.g)

Suy ra: AFCG=ACBC⇒BC.AF=AC.CGAFCG=ACBC⇒BC.AF=AC.CG

Mà BC = AD (tính chất hình bình hành )

Suy ra: AD.AF = AC.CG            (2)

Cộng từng vế của đẳng thức (1) và (2) ta có:

AB.AE + AD.AF = AC.AG + AC.CG

⇒AB.AE+AD.AF=AC(AG+CG)⇒AB.AE+AD.AF=AC(AG+CG)

Mà AG+CG=ACAG+CG=AC  nên AB.AE+AD.AF=AC2

13 tháng 3 2022

có gì sai mong bạn sửa lại nha

 

2 tháng 2 2015

Kẻ DH và BK cùng vuông góc với AC. Thì tam giác vuông ADH = tam giác vuông CBK( AD = BC ; góc DAH = góc BCK so le trong) suy ra AH = CK. 

Ta có tam giác vuông ADH đồng dạng với tam giác vuông ACF vì có góc A chung suy ra AH/AF = AD/AC suy ra AD.AF = AH.AC = CK.AC (1)

Cm tương tự ta cũng có : tam giác vuông AEC đồng dạng với tam giác vuông AKB cho ta AB.AE = AK.AC (2)

Cộng từng vế (1) và (2) suy ra đpcm

11 tháng 6 2021

 a, Xét ΔAHD và ΔAFC có:

      ˆAHDˆAFC=90 độ

      ˆA chung

ΔAHD và ΔAFC đồng dạng (g,g)

AH/AF=AD/AC=AD/AC⇒AD.AF=AC.AH

b,

Từ B kẻ BK⊥AC

Chứng minh tương tự như trên ta có:

AB.AE=AK.AC

 Mà AK=HC (tam giác ABK và tam giác CDH bằng nhau)

⇒AD.AF+AB.AE=AC.AH+AK.AC=AC(AH+AK)=AC(AH+HC)=AC.AC=AC^2

16 tháng 3 2020

Hạ 2 đường cao từ B, D xuống AC cắt lần lượt ở K, H

Ta có : tam giác BKC =tam giác DHA (cạnh huyền góc nhọn)

=> CK = AH (1)

Mà tam giác AKB đồng dạng tam giác AEC ( góc góc )

=> AB * AE = AC * AK (2)

Chứng minh tương tự: AD * AF =AH * AC (3)

(2) + (3) <=> AB * AE + AD * AF = AC * AK + AC * AH

                                                    = AC ( AH + AK) (4)

Thế  (1) vào (4)

=> AB * AE + AD * AF = AC * AC = AC2 (đpcm)

15 tháng 3 2020

chứng minh rằng cái j

15 tháng 3 2020

Đề bị thiếu ko bn

?

29 tháng 4 2018

Từ  D  kẻ  DH  vuông góc với AC   (H thuộc AC)

Xét  \(\Delta AHD\)và   \(\Delta AFC\:\)có:

    \(\widehat{AHD}=\widehat{AFC\:}=90^0\)

    \(\widehat{HAD}\) chung

suy ra:    \(\Delta AHD~\Delta AFC\:\)

\(\Rightarrow\)\(\frac{AH}{AF}=\frac{AD}{AC}\)

\(\Rightarrow\)\(AD.AF=AH.AC\)  (1)

Xét  \(\Delta AEC\) và     \(\Delta CHD\)  có:

\(\widehat{AEC}=\widehat{CHD}=90^0\)

\(\widehat{EAC}=\widehat{HCD}\) (slt do ABCD là hình bình hành nên AB//CD)

suy ra:   \(\Delta AEC~\Delta CHD\)

\(\Rightarrow\)\(\frac{AE}{CH}=\frac{AC}{CD}\)

\(\Rightarrow\)\(AE.CD=CH.AC\)

mà  \(CD=AB\) (do ABCD là hình bình hành)

\(\Rightarrow\)\(AB.AE=CH.AC\)

Lấy (1) + (2) theo vế ta được:

   \(AD.AF+AB.AE=AH.AC+HC.AC=AC^2\) (đpcm)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Dựng BG ⊥ AC.

Xét ΔBGA và ΔCEA, ta có:

∠ (BGA) =  ∠ (CEA) =  90 0

∠ A chung

 △ BGA đồng dạng  △ CEA(g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

AB.AE = AC.AG (1)

Xét  △ BGC và  △ CFA, ta có:

∠ (BGC) =  ∠ (CFA) = 90 0

∠ (BCG) =  ∠ (CAF) (so le trong vì AD //BC)

△ BGC đồng dạng △ CFA (g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ⇒ BC.AF = AC.CG

Mà BC = AD (tính chất hình bình hành)

Suy ra: AD.AF = AC.CG (2)

Cộng từng vế đẳng thức (1) và (2) ta có:

AB.AE + AD.AF = AC.AG + AC.CG