Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình.
a) Xét tam giác OAB có AB // CD
⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)
=> OC = 4cm, DC = 6cm
Vậy OC = 4cm và DC = 6cm
b) Xét tam giác FAB có DC // AB
⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )
c) Theo (1), ta đã có:
OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)
Vì MN // AB mà AB // DC => MN // DC
Xét tam giác ADC có MO// DC
⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)
CMTT : ONDC=OBDBONDC=OBDB (4)
Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )
a, góc FAD + góc DAE = 90
góc BAE + góc DAE = 90
=> góc FAD = góc BAE
xét tam giác ADF và tam giác ABE có : góc ADF = góc ABE = 90
AD = AB do ABCD là hình vuông (gt)
=> tam giác ADF = tam giác ABE (cgv-gnk)
=> AF = AE (đn)
=> tam giác AFE cân tại A (đn)
góc AFE = 90 (gT)
=> tam giác AFE vuông cân (dh)
b, tam giác AFE cân tại A (câu a)
AI Là trung tuyến của tam giác AFE (gt)
=> AI _|_ FE (đl) (1)
EG // AB (gt)
AB // DC do ABCD là hình vuông (gT)
=> EG // FK (2)
=> góc GEI = góc IFK (slt)
xét tam giác GIE và tam giác KIF có : góc GIE = góc KIF (đối đỉnh)
FI = IE do I là trđ của FE (gt)
=> tam giác GIE = tam giác KIF (g-c-g)
=> GE = FK (3)
(2)(3) => GEFK là hình bình hành và (1)
=> GEFK là hình thoi (dh)