Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
EP // MF (EP là đường trung bình trong ∆BAF) và EP = AF / 2 = MF => MENF là hình bình hành.
=> MP và EF cắt nhau tại trung điểm I.
FN // DE và FN = DE / 2 = QE => FQEN là hình bình hành => QN và EF cắt nhau tại trung điểm I
=> MP và QN cắt nhau tại trung điểm của chúng => MNPQ là hình bình hành
a) AB=CD=2AD\Rightarrow AE=DF=AD
AE=DF=AD=FC; AE//DF \Rightarrow AEFD là hình thoi
AE//FC ; AE=FC \Rightarrow AECF là hình bình hành
b)c/m tương tự như câu a ta có BEFC là hình thoi
\Rightarrow góc M=góc N=90
mà EC//FA\Rightarrow góc E=N=M=F=90
\Rightarrow MENF là hình chữ nhật
c/nối MN
ENFM là hình vuông khi MN vuông góc EF
dễ dàng c/m dc MN//AB//CD \Rightarrow góc FEC=90\Rightarrow góc A=90
\Rightarrow ABCD là hình chữ nhật
A D F M E B C N
a) Tứ giác AEFD là hình thoi, tứ giác AECF là hình bình hành (tự chứng minh).
b) Tứ giác AECF là hình bình hành nên EN // FM. Tứ giác AECF là hình bình hành nên EM // FN. AEFD là hình thoi nên AF \(\perp\) DE.
Hình bình hành EMFN có \(\widehat{M}=90^o\) nên là hình chữ nhật.
c) Hình chữ nhật EMFN là hình vuông
\(\Leftrightarrow\) ME = MF \(\Leftrightarrow\) DE = AF (vì DE = 2ME, AF = 2MF)
\(\Leftrightarrow\) Hình thoi AEFD có hai đường chéo bằng nhau
\(\Leftrightarrow\) AEFD là hình vuông \(\Leftrightarrow\) \(\widehat{A}=90^o\).
\(\Leftrightarrow\) Hình bình hành ABCD là hình chữ nhật.
Như vậy, hình chữ nhật EMFN là hình vuông nếu ABCD là hình chữ nhật.