Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh AECF là hình bình hành có 2đường chéo vuông góc với nhau có 4 cạnh bằng nhau.
Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
Suy ra: MN//AD
hay MN\(\perp\)AC
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
mà MN\(\perp\)AC
nên AMCN là hình thoi
Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
Suy ra: MN//AD
hay MN\(\perp\)AC
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
mà MN\(\perp\)AC
nên AMCN là hình thoi
Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
Suy ra: MN//AD
hay MN\(\perp\)AC
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
mà MN\(\perp\)AC
nên AMCN là hình thoi
a) bạn tự vẽ hình nhé!
Có : \(AE=BE=\frac{1}{2}AB\) (đề cho)
\(DF=CF=\frac{1}{2}DC\) (đề cho)
mà \(AB=CD\)
\(\Rightarrow\) \(AE=BE=DF=CF\)
Xét tứ giác AEFD có:
\(AE=DF\) (cmt) và AE//DF( AB//CD)
\(\Rightarrow\) Tứ giác AEFD là hình bình hành
Xét tứ giác AECF có :
AE = CF ( cmt) và AE//CF ( AB//CD)
\(\Rightarrow\) Tứ giác AECF là hình bình hành
M là giao điểm của AF và DE
\(\Rightarrow\) AM = FM=\(\frac{1}{2}AF\) ( tính chất đ/chéo hbhành) (1)
N là giao điểm của BF và CE
\(\Rightarrow\) EN = CN=\(\frac{1}{2}CE\) ( tính chất đ/chéo hbhành) (2)
Có AF = AM + FM
CE = EN + CN
mà AE = CE ( AECF là hbh)
Từ (1) và (2) suy ra MF= EN và MF//EN ( AF//CE )
\(\Rightarrow\) EMFN là hình bình hành (3)
Có AE = AD ( cùng bằng 2AB ) và AEFD là hình bình hành nên AEFD là hình thoi
\(\Rightarrow\) AF \(\perp\) DE tại M hay góc EMF = 90 độ (4)
Từ (3) và (4) suy ra : EMFN là hcn