Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tứ giác ABDC có:
M là trung điểm của BC (gt)
M là trung điểm của AD (gt)
⇒ ABDC là hình bình hành
Mà ∠BAC = 90⁰ (∆ABC vuông tại A)
⇒ ABDC là hình chữ nhật
b) Do ABDC là hình chữ nhật (cmt)
⇒ CD = AB (1)
Do B là trung điểm của AE (gt)
⇒ BE = AB = AE : 2 (2)
Từ (1) và (2) ⇒ CD = BE
Do ABDC là hình chữ nhật (cmt)
⇒ CD // AB
⇒ CD // BE
Tứ giác BEDC có:
CD // BE (cmt)
CD = BE (cmt)
⇒ BEDC là hình bình hành
c) Do ABDC là hình chữ nhật (cmt)
⇒ AC // BD
Do đó AC, BD, EK đồng quy là vô lý
Em xem lại đề nhé!
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
Do đó: ABDC là hình bình hành
Hình bình hành ABDC có \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: ABDC là hình chữ nhật
=>AB//CD và AB=CD
AB=CD
AB=BE
Do đó: CD=BE
Xét tứ giác CDEB có
CD//EB
CD=EB
Do đó: CDEB là hình bình hành
c: Xét ΔADE có
DB,EM là đường trung tuyến
DB cắt EM tại K
Do đó: K là trọng tâm của ΔADE
=>EK=2KM
a: Xét tứ giác ABEC có
I là trung điểm chung của AE và BC
AB=AC
Do đó: ABEC là hình thoi
b: AB//CE
AB//CD
Do đó: C,D,E thẳng hàng
c: Xét ΔDAE có
AC là trung tuyến
AC=DE/2
Do đó: ΔDAE vuông tại A
=>góc DAE=90 độ
d: Để ABEC là hình vuông thì góc BAC=90 độ
=>AB vuông góc với AC
#Tự vẽ hình nhé bạn#
a ) Ta có :
\(\Rightarrow\)◇ABEC là hình bình hành ( vì có 2 đường chéo AE và BC cắt nhau tại trung điểm M )
b ) Xét \(\Delta\)ADE có :
\(\Rightarrow\)C là trung điểm DE