\(\perp\)AD tại E. F là trung điểm của CD, kẻ FH<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017
 
 

 ta có: MN//AB//CD ( MN và AB cùng vuông góc với CE) 
và MD//NC (AD//BC) 
=> MNCD là hình bình hành (1) 
MD=AD/2 
MN=AB=AD/2 
nên MD=MN (2) 
từ (1)(2) => MNCD là hình thoi. 
B) do MN//AB//CD(câu a) 
và M là trung điểm AD 
=> F là trung điểm EC => MF là đường trung tuyến của tam giác MEC 
với lại MF là đường cao của tam giác MEC(MF vuông góc với EC) 
=> tam giác MEC cân tại M 
C) tam giác MEC cân tại M và MF là đường cao của tam giác MEC 
=> MF là đường phân giác của tam giác MEC 
=> góc EMF=góc FMC 
góc AEM=góc EMF(AB//MN) 
góc FMC=góc CMD(MNCD là hình thoi nên đường chéo MC là phân giác) 
từ 3 điều trên suy ra góc AEM=EMF=FMC=CMD 
=> 2AEM=FMC+CMD 

20 tháng 12 2018

vẽ hình giùm

lười

20 tháng 12 2018

A B C D E F K H

6 tháng 10 2018

A B C D E M F N 1 2 3

a, Ta có: CE _|_ AB (gt)

              MN _|_ CE (gt)

=> MN // AB

Mà AB // CD (tính chất HBH)

=> MN // CD 

=> MNCD là HBH (1)

Lại có:  BC = 2AB

Mà AD = BC (t/c HBH), AB = CD (t/c HBH)

=> AD = 2CD 

=> \(CD=\frac{AD}{2}\)

Mà \(MD=\frac{AD}{2}\) (M là trung điểm của AD)

=> MD = CD (2)

Từ (1) và (2) => MNCD là hình thoi

b,  Vì MNCD là hình thoi => MD = CN 

                                            AD = BC (t/c hình HBH)

=>\(CN=\frac{BC}{2}\) hay CN = BN

Xét t/g BCE có: CN = BN (cmt), BE // NF (câu a)

=> EF = FC 

=> MF là đường trung tuyến của t.g CME

Mà MF cũng là đường cao của t/g CME

=> t/g CME cân tại M

c, Vì AB // MN (câu a) => góc BAD = góc NMD (đồng vị) (3)

Ta có: góc NMD = góc M1 + góc M2

Vì t/g CME cân tại M (câu b) => MF là tia p/g của góc CME => góc M2 = góc M3

MNCD là hình thoi (câu a) => góc M1 = M2

Do đó góc M1 = góc M2 = góc M3

=>góc NMD = \(2\widehat{M_3}\) (4)

Mà góc M3 = góc AEM (AE//MF;so le trong) (5)

Từ (3),(4),(5) => góc BAD = 2 góc AEM

P/s: hình k đc chuẩn

13 tháng 12 2017

Hình bạn tự vẽ nha!

a,  ta có:

Góc A=Góc D=90°(gt)<=>AD_|_DC

BH_|_DC

=>BH//AD

ABCD là hình thang nên AB//CD

=>Tứ giác ABHD là hình chữ nhật.

b,Do ABHD  là hình chữ nhật, nên:

AB=HD=3cm

CD=6cm=>HC=6-3=3 cm

Do BH_|_CD(gt)=>góc BHC=90°

=>tam giác BHC vuông tại H

Xét tam giác vuông BHC:

Theo định lý pitago trong tam giác vuông thì:

BC^2=HC^2+BH^2

=>BH^2=BC^2-HC^2=(5)^2-(3)^2=16

=>BH=4 cm

=>Diện tích hình chữ nhật ABHD là:

3.4=12 cm2

c,Do M là M là trung điểm của BC nên:

MB=MC=BC/2=5/2=2,5cm

Do N đối xứng với M qua E (gt)nên:

EM=EN

Đường chéo AH^2=AD^2+DH^2=25cm

=>AH=5cm=>EH=5/2=2,5cm

=>Tứ giác ABCHH=NMCD vì MC=ND=BC/2=2,5 cm

EM+EN=2AB=6 cm

AB//HC=3cm;BC//AH=5cm

=>NM//DC=6cm

==> Tứ giác NMCD  là hình bình hành

d,bạn tự chứng minh (khoai quá)

8 tháng 11 2018

a)xét tứ giác ADME có

CÂB =AÊM=góc ADM=900

=>ADME là hcn

b)vì MA là đg trung tuyến nên MA=MC=MB

xét tam giác CMA có

CM=MA(cmt)

CÊM=AÊM=900

EM là cạnh chung

=>...(cạnh huyền-cạnh góc vuông)

=>CE=EA

mà EA=MD(EAMD là hcn) nên CE=MD (1)

ta có MA=MC(cmt)

mà MA=ED(EAMD là hcn)

=>MC=ED (2)

xét tứ giác CMDE có CE=MD,CM=ED( 1 và 2)

=>CMED là hbh

c)

xét tam giác MDB vuông tại D có DI là trung tuyến nên MI=IB=ID

xét tứ giác MKDI có

KM=KD(K là giao điểm hai dg chéo của hcn)

KM=MI(vì MA=MB mà K và I lần lượt là trung điểm của chúng)

MI=ID(cmt)

=>KMID là thoi

mà KI là đg chéo của góc I nên KI cũng là p/g của góc I

(ck hk tốt nhé)