Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
ΔOAB vuông tại O
=>AB^2=AO^2+BO^2
ΔBOC vuông tại O
=>BC^2=BO^2+CO^2
ΔAOD vuông tại O
=>AD^2=AO^2+DO^2
ΔDOC vuông tại O
=>DC^2=OC^2+OD^2
AB^2+BC^2+CD^2+DA^2
=OA^2+OB^2+OC^2+OD^2+OA^2+OB^2+OC^2+OD^2
=2(OA^2+OB^2+OC^2+OD^2)
2:
AB^2+CD^2
=OA^2+OB^2+OC^2+OD^2
=OA^2+OD^2+OB^2+OC^2
=AD^2+BC^2
vì tam giác OAB vuông tại O, theo pytago
OA^2 + OB^2 = AB^2
vì tam giác OAD vuông tại O, theo pytago
OA^2 + OD^2 = AD^2
vì tam giác ODC vuông tại O, theo pytago
OD^2 + OC^2 = DC^2
vì tam giác OBC vuông tại O, theo pytago
OB^2 + OC^2 = BC^2
cộng vế với vế của từng đẳng thức trên ta được
AB^2 + BC^2 + CD^2 + DA^2 = 2(OA^2 + OB^2 + OC^2 + OD^2)
vì tam giác OAB vuông tại O, theo pytago
OA^2 + OB^2 = AB^2
vì tam giác OAD vuông tại O, theo pytago
OA^2 + OD^2 = AD^2
vì tam giác ODC vuông tại O, theo pytago
OD^2 + OC^2 = DC^2
vì tam giác OBC vuông tại O, theo pytago
OB^2 + OC^2 = BC^2
cộng vế với vế của từng đẳng thức trên ta được
AB^2 + BC^2 + CD^2 + DA^2 = 2(OA^2 + OB^2 + OC^2 + OD^2)
Ta chứng minh
Tương tự câu a ta chứng minh được
Þ AD.AF =AK.AC (2)
Từ (1) ta có AB.AE = AC.AH (3)
Lấy (3) + (2) ta được AD.AF + AB.AE = AC2 (ĐPCM)
bạn vào tìm kiếm là thấy câu hỏi giống bạn thôi bạn xem lời giải là đuọc