Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó: ABEF là hình thoi
b: Xét ΔBIE có BI=BE
nên ΔBIE cân tại B
mà góc IBE=60 độ
nên ΔBIE đều
=>góc I=60 độ
Xét tứ giác AFEI có
EF//AI
góc I=góc A
Do đó AFEI là hình thang cân
c: Xét ΔBAD có
BF là đường trung tuyến
BF=AD/2
Do đó: ΔBAD vuông tại B
=>DB vuông góc với BI
Xét tứ giác BICD có
BI//CD
BI=CD
Do đó: BICD là hình bình hành
mà DB vuông góc với BI
nên BICD là hình chữ nhật
d: Xét ΔAED có
EF la trung tuyến
FE=DA/2
Do đó: ΔAED vuông tại E
=>góc AED=90 độ
a: Ta có: BC=AD(ABCD là hình bình hành)
\(BE=EC=\dfrac{BC}{2}\)(E là trung điểm của BC)
\(AF=FD=\dfrac{AD}{2}\)(F là trung điểm của AD)
Do đó: BE=EC=AF=FD
Xét tứ giác ABEF có
BE//AF
BE=AF
Do đó: ABEF là hình bình hành
Hình bình hành ABEF có \(BE=BA\left(=\dfrac{BC}{2}\right)\)
nên ABEF là hình thoi
b: Ta có: BE=BA
BA=BI
Do đó: BE=BI
Ta có: BE//AF
=>\(\widehat{IBE}=\widehat{IAF}\)(hai góc đồng vị)
mà \(\widehat{IAF}=60^0\)
nên \(\widehat{IBE}=60^0\)
Xét ΔBIE có BI=BE và \(\widehat{IBE}=60^0\)
nên ΔBIE đều
=>\(\widehat{I}=60^0=\widehat{A}\)
Xét tứ giác AIEF có EF//AI
nên AIEF là hình thang
Hình thang AIEF có \(\widehat{EIA}=\widehat{FAB}\left(cmt\right)\)
nên AIEF là hình thang cân
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó: ABEF là hình thoi
b: Xét ΔBIE có BI=BE
nên ΔBIE cân tại B
mà góc IBE=60 độ
nên ΔBIE đều
=>góc I=60 độ
Xét tứ giác AFEI có
EF//AI
góc I=góc A
Do đó AFEI là hình thang cân
c: Xét ΔBAD có
BF là đường trung tuyến
BF=AD/2
Do đó: ΔBAD vuông tại B
=>DB vuông góc với BI
Xét tứ giác BICD có
BI//CD
BI=CD
Do đó: BICD là hình bình hành
mà DB vuông góc với BI
nên BICD là hình chữ nhật
d: Xét ΔAED có
EF la trung tuyến
FE=DA/2
Do đó: ΔAED vuông tại E
=>góc AED=90 độ
a, Ta có :
EC // FD
\(EC=FD=\frac{4}{2}BC=\frac{1}{2}AD\)
=> ECDF là hình bình hành
\(EF=AB=\frac{1}{2}BC\)
=> ECDF là hình thoi
b, \(\widehat{A} =60^o\)
\(\Rightarrow D=120^o\)
\(\Rightarrow\widehat{EDF}=120^o:2=60^o\)
Mà BE // AD
==> BEDA là hình thang cân
c, Xét tam giác AFE : AF = EF --- > góc AFE
BEFA là hình thoi
==> AE là tia phân giác của \(\widehat{BAE}\Rightarrow\widehat{EAF}=30^o\)
Mà EDA = 60o
=> Trong tam giác EAD = 180o = \(\widehat{EAF}+\widehat{ADE}+\widehat{EAD}\)
\(=30^o+60^o+\widehat{EAD}\)
\(\Rightarrow\widehat{AED}=60^o\)
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó: ABEF là hình thoi
b: Xét ΔBIE có BI=BE
nên ΔBIE cân tại B
mà góc IBE=60 độ
nên ΔBIE đều
=>góc I=60 độ
Xét tứ giác AFEI có
EF//AI
góc I=góc A
Do đó AFEI là hình thang cân
c: Xét ΔBAD có
BF là đường trung tuyến
BF=AD/2
Do đó: ΔBAD vuông tại B
=>DB vuông góc với BI
Xét tứ giác BICD có
BI//CD
BI=CD
Do đó: BICD là hình bình hành
mà DB vuông góc với BI
nên BICD là hình chữ nhật
d: Xét ΔAED có
EF la trung tuyến
FE=DA/2
Do đó: ΔAED vuông tại E
=>góc AED=90 độ
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó: ABEF là hình thoi
b: Xét ΔBIE có BI=BE
nên ΔBIE cân tại B
mà góc IBE=60 độ
nên ΔBIE đều
=>góc I=60 độ
Xét tứ giác AFEI có
EF//AI
góc I=góc A
Do đó AFEI là hình thang cân
c: Xét ΔBAD có
BF là đường trung tuyến
BF=AD/2
Do đó: ΔBAD vuông tại B
=>DB vuông góc với BI
Xét tứ giác BICD có
BI//CD
BI=CD
Do đó: BICD là hình bình hành
mà DB vuông góc với BI
nên BICD là hình chữ nhật
d: Xét ΔAED có
EF la trung tuyến
FE=DA/2
Do đó: ΔAED vuông tại E
=>góc AED=90 độ
a)Ta có góc A=C=60° và B=D=120° và AB=CD=1/2BC (tính chất hình bh)
E là trung điểm BC => BE=EC=AB=1/2BC
F là trung điểm AD => AF=DF=1/2AD=1/2BC
Ta có EF=CD và EC=FD (tính chất đoạn chắn)
=> ECDF là hình bình hành
Và EC=DC (cùng bằng 1/2BC)
Hình bh ECDF có 2 cạnh kề bằng nhau => ECDF là hình thoi
b) Ta có BE//AD => ABED là hình thang
xét tam giác CED có EC=DC và có góc C=60°
=>CED là tam giác đều
=>EDC=60°
ta có BDE=D-ECD (đây là ký hiệu góc)
=>BDE=60°
Mà ta biết góc A=60°
Hình thang ABED có 2 góc đáy bằng nhau => là hình thang cân
d) 90độ, vì hình ABEF là hình thoi, nên AE là phân giác góc BEF, mà góc này 60 đô, nên AEF là 30 đô, mặt khác FED là 60 đô, đã chứng minh ở câu b) nên AED = 30+60 = 90 đô.
câu b đâu có góc FED =90 độ đâu