K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...  loading...  

10 tháng 10 2021

giúp mình với ạbucminh

10 tháng 10 2021

19 tháng 10 2021

a: Xét ΔADM và ΔCBN có 

\(\widehat{ADM}=\widehat{CBN}\)

AD=CB

\(\widehat{A}=\widehat{C}\)

Do đó: ΔADM=ΔCBN

Suy ra: AM=CN

24 tháng 8 2017

Cách 1: Tách số hạng thứ hai 

          x2 – 6x + 8  = x2 – 2x – 4x + 8

                            =  x(x – 2) – 4( x – 2)

         = (x –  )(x –  4).

Cách 2:  Tách số hạng thứ 3

          x - 6x + 8 = x2 – 6x + 9 – 1

                            = (x – 3)2 – 1  = ( x – 3 – 1)(x – 3 + 1)

                           = (x –  4)( x – 2).

Cách 3: x – 6x + 8  =  x2 – 4 – 6x + 12

                                     =  ( x – 2)(x + 2) – 6(x –  2)

                                       = (x –  2)(x –  4)

Cách 4: x – 6x + 8  = x2 – 16 – 6x + 24

                                       = ( x –  4)(4 + x) – 6(x – 4)

                                       = (x –  4)( x + 4 – 6) 

                                       = (x –  4) ( x – 2).

Cách 5 : x – 6x + 8  = x2 – 4x + 4 – 2x + 4

                                        = (x – 2)2 – 2( x – 2)

                                      = (x – 2)( x – 2 – 2)     

                                       = ( x – 2)(x – 4).

24 tháng 10 2016

Bạn tự vẽ hình nhá!!!!

a) ABCD là hình bình hành=>góc ADC=góc ABC => góc MBN=góc MDN

Mà: góc MBN= góc BNC( so le trong) => góc BNC=góc MDN => DM//BN

b) Từ phần a ta có:

Xét DMNB có  DM//BN

                      BM//DN (do AB//CD)

=> DMNB là hbh

c) Ta có:

góc AMD= góc MDC(so le trong) => góc ADM= góc AMD=> Tam giác AMD cân tại A

Mà: AH là đường phân giác=> AH là đường cao<=> AH vuông góc với DM (1)

=>AG vuông góc với BN ( do DM//BN)     (2)

Tương tự, ta cũng chứng minh được tam giác BNC cân tại C

Mà: CF là đường PG=> CF vuông góc với BN (3)

Từ (1); (2); (3) => HEFG là hcn do có 3 góc vuông

a: Xét ΔADN và ΔCBM có

góc A=góc C

AD=CB

góc ADN=góc CBM

=>ΔADN=ΔCBM

b: ΔADN=ΔCBM

=>AN=CM

AN+NB=AB

CM+MD=CD

mà AN=CM và AB=CD

nên NB=MD

mà NB//MD

nên NBMD là hình bình hành

c: Xét tứ giác AMCN có

AN//CM

AN=CM

=>AMCN là hình bình hành

a: Ta có: \(\hat{DAM}=\hat{BAM}=\frac12\cdot\hat{DAB}\) (AM là phân giác của góc DAB)

\(\hat{BCN}=\hat{DCN}=\frac12\cdot\hat{BCD}\) (CN là phân giác của góc BCD)

\(\hat{DAB}=\hat{DCB}\) (ABCD là hình bình hành)

nên \(\hat{DAM}=\hat{BAM}=\hat{BCN}=\hat{DCN}\)

Xét ΔMDA và ΔNBC có

\(\hat{MDA}=\hat{NBC}\)

DA=BC

\(\hat{MAD}=\hat{NCB}\)

Do đó: ΔMDA=ΔNBC

=>MA=NC và DM=BN

Ta có: DM+MC=DC

BN+NA=BA

mà DM=BN và DC=BA

nên MC=NA

Xét tứ giác ANCM có

AN//CM

AN=CM

Do đó: ANCM là hình bình hành

=>AM//CN

b: Ta có: \(\hat{DAM}=\hat{BAM}\) (AM là phân giác của góc BAD)

\(\hat{BAM}=\hat{AMD}\) (hai góc so le trong, AB//CD)

Do đó: \(\hat{DAM}=\hat{DMA}\)

=>ΔDAM cân tại D

Ta có: \(\hat{BNC}=\hat{NCD}\) (hai góc so le trong, BA//CD)

\(\hat{BCN}=\hat{NCD}\) (CN là phân giác của góc CBD)

Do đó: \(\hat{BNC}=\hat{BCN}\)

=>ΔBNC cân tại B

ΔDAM cân tại D

mà DE là đường phân giác

nên E là trung điểm của AM

ΔBNC cân tại B

mà BF là đường phân giác

nên F là trung điểm của NC

Xét hình thang ANCM có

E,F lần lượt là trung điẻm của AM,CN

=>EF là đường trung bình của hình thang ANCM

=>EF//CM//AN và \(EF=\frac{CM+AN}{2}=\frac{CM+CM}{2}=CM=AN\)

EF//CM

=>EF//CD

c: Ta có: \(NF=FC=\frac{NC}{2}\)

\(AE=EM=\frac{AM}{2}\)

mà NC=AM

nên NF=FC=AE=EM

Xét tứ giác BNDM có

BN//DM

BN=DM

Do đó: BNDM là hình bình hành

=>BD cắt MN tại trung điểm của mỗi đường

mà O là trung điểm của BD

nên O là trung điểm của MN

Xét tứ giác NFME có

NF//ME

NF=ME

Do đó: NFME là hình bình hành

=>NM cắt FE tại trung điểm của mỗi đường

mà O là trung điểm của MN

nên O là trung điểm của FE