K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2019

         A B C D O

Xét tam giác ABC và BAD có :

AB : chung 

\(\widehat{BAD}=\widehat{ABC}\)

AD = BC    

( ABCD là hình thang cân ) 

\(\Rightarrow\Delta ABC=\Delta BAD\)

\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)

\(\Delta AOB\)CÓ : \(\widehat{OAB}=\widehat{OBA}\Rightarrow\Delta AOB\)cân tại O nên OA = OB

3 tháng 9 2020

a/

\(\widehat{DAE}=\frac{\widehat{A}}{2};\widehat{ADE}=\frac{\widehat{D}}{2}\Rightarrow\widehat{DAE}+\widehat{ADE}=\frac{\widehat{A}+\widehat{D}}{2}\)

Mà \(\widehat{A}+\widehat{D}=180^o\) (Vì AB//CD nên ^A và ^D là 2 góc trong cùng phía nên bù nhau)

\(\Rightarrow\widehat{DAE}+\widehat{ADE}=\frac{\widehat{A}+\widehat{D}}{2}=\frac{180^o}{2}=90^o\) 

Xét tg ADE có ^DAE+^ADE=90 => ^AED=180-(^DAE+^ADE)=180-90=90

Chứng minh tương tự cũng có ^BFC=90

b/

Xét tg ADP có DE là phân giác cua ^D

^AED=90 => DE vuông góc với AP

=> DE vùa là phân giác vừa là đường cao => tg ADP cân tại D => AD=DP

Chứng minh tương tự cũng có tg BPC cân tại C => BC=CP

=> AD+BC=DP+CP=DC

c/

Xét tg cân ADP có DE là đường cao => DE là đường trung trực thuộc cạnh AP => AE=PE

Chứng minh tương tự với tg cân BPC => BF=PF

=> EF là đường trung bình của tg ABP (đường thẳng đi qua trung điểm 2 cạnh của 1 tg là đường trung bình)

=> EF//AB//CD

Xét tg ADP có EF//CD và AF=PF => EF là đường trung bình của tg ADP => EF đi qua trung điểm của AD

Chứng minh tương tự cuãng có EF đi qua trung ddiemr của BC

=> EF là đường trung bình của hình thang ABCD

6 tháng 9 2019

๖ۣۜVᶖệᵵ‿₳ᵰħ²ᴷ⁷《ღᵯįᵰ ღ》《Team BÁ ĐẠO.COM. LẬP KỈ LỤCC KHI HIẾP DÂM 300 NG CON GÁI

ˆDAE=ˆA2;ˆADE=ˆD2⇒ˆDAE+ˆADE=ˆA+ˆD2DAE^=A^2;ADE^=D^2⇒DAE^+ADE^=A^+D^2

Mà ˆA+ˆD=180oA^+D^=180o (Vì AB//CD nên ^A và ^D là 2 góc trong cùng phía nên bù nhau)

⇒ˆDAE+ˆADE=ˆA+ˆD2=180o2=90o⇒DAE^+ADE^=A^+D^2=180o2=90o 

Xét tg ADE có ^DAE+^ADE=90 => ^AED=180-(^DAE+^ADE)=180-90=90

Chứng minh tương tự cũng có ^BFC=90

b/

Xét tg ADP có DE là phân giác cua ^D

^AED=90 => DE vuông góc với AP

=> DE vùa là phân giác vừa là đường cao => tg ADP cân tại D => AD=DP

Chứng minh tương tự cũng có tg BPC cân tại C => BC=CP

=> AD+BC=DP+CP=DC

c/

Xét tg cân ADP có DE là đường cao => DE là đường trung trực thuộc cạnh AP => AE=PE

Chứng minh tương tự với tg cân BPC => BF=PF

=> EF là đường trung bình của tg ABP (đường thẳng đi qua trung điểm 2 cạnh của 1 tg là đường trung bình)

=> EF//AB//CD

Xét tg ADP có EF//CD và AF=PF => EF là đường trung bình của tg ADP => EF đi qua trung điểm của AD

Chứng minh tương tự cuãng có EF đi qua trung ddiemr của BC

=> EF là đường trung bình của hình thang ABCD