K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

a, Vì AD//BC nên \(\widehat{ADE}=\widehat{CBF}\) (so le trong)

Xét tg AED và tg CFB có

\(\left\{{}\begin{matrix}\widehat{ADE}=\widehat{CBF}\\AD=BC\left(hbh.ABCD\right)\\\widehat{AED}=\widehat{CFB}\left(=90^0\right)\end{matrix}\right.\)

Do đó \(\Delta AED=\Delta CFB\left(ch-gn\right)\)

b, Vì \(\Delta AED=\Delta CFB\left(cmt\right)\) nên \(AE=CF\)

Mà AE//CF (⊥BD) nên AECF là hbh

17 tháng 9 2020

a) ABCD là hình bình hành => AD=BC, AD//BC

--->Dễ dàng có được \(\Delta AED=\Delta CFB\left(c.g.c\right)\Rightarrow AE=CF\)

Mà AE//CF (cùng vuông góc BD) => AECF là hình bình hành.

b) AHDK không thể là hình bình hành nha --> phải là AHCK

Chứng minh: AH//CK (cùng vuông góc BD)

CH//AK (vì ABCD là hình bình hành)

=> AHCK là hình bình hành

12 tháng 8 2017

bạn đã tìm ra lời giải  chưa chỉ mình với nhanh nhanh nha mình sắp nộp bài rồi cảm ơn

17 tháng 10 2021

a: Xét ΔAEB và ΔCFD có 

AB=CD

\(\widehat{ABE}=\widehat{CDF}\)

BE=DF

Do đó: ΔAEB=ΔCFD

Suy ra: \(\widehat{AEB}=\widehat{CFD}\)

\(\Leftrightarrow\widehat{AEF}=\widehat{EFC}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên AE//CF

17 tháng 10 2021

Giúp em câu b) với ạ !