Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1A) Gọi I là giao điểm của EF và AB Vì EF là đường trung trực của MB nên BE=BF xét hai tam giác BEI và BFI thì chúng bằng nhau ( t. hợp ch-cgv) IE=IF; EF vuông góc AB =) E và F đối xứng nhau qua AB nên ta chứng minh được hai tam giác BEI và BF1 bằng nhau. 1b) gọi I là giao điểm của MB và EF
ta có EI là đường trung bình của tam giác MEB
nên tam giác MEB cân tại E => góc EMB = góc EBM
có EI là đường cao đồng thời là đường phân giác
nên góc MEI = góc BEI
ta có MN//BC//AD
hay ME//BF
nên góc MFI = góc IFB; góc EMB = góc FBM ( 2 góc slt)
mà góc MEI = góc BEI
nên góc IFB = góc BEI
=> tam giác BEF cân tại B
lại có BI là tia phân giác (góc EBI = góc FBI=góc EMI)
hay BI là đường trung tuyến
ta có EF vuông góc với MB
I là trung điểm của MB và EF
nên tứ giác MEBF là hình thoi 1c)*Vì EB // NC nên EBCN là hình thang có 2 đáy là EB và NC
để EBCN là hình thang cân thì EN = BC
A B C D E F M N
Áp dụng Talet vào tam giác AEM có AE//CD
\(\frac{AM}{CM}=\frac{1}{3}\Rightarrow\frac{AM}{AC}=\frac{1}{4}\Rightarrow S_{ADM}=\frac{1}{4}S_{ADC}=\frac{1}{8}S\)
Tương tự: \(\frac{CN}{AN}=\frac{1}{2}\Rightarrow\frac{CN}{AC}=\frac{1}{3}\Leftrightarrow S_{DNC}=\frac{1}{3}S_{ADC}=\frac{1}{6}S\)
Có: \(S_{DMN}=S_{ADC}-S_{ADM}-S_{DNC}=\frac{1}{2}S-\frac{1}{8}S-\frac{1}{6}S=\frac{5}{24}S\)