...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2015

kẻ Nx song song với AB => góc BAN + ANx = 180o (2 góc trong cùng phía)

=> góc xNE + NEF = 180o do góc BAN + ANE + NEF = 360o

mà 2 góc này ở vị trí cùng phía => Nx // EF => AB // EF (1)

kẻ My song song với AB => góc BAM = AMy (SLT)

mà BAM + MCD = AMC  = AMy + yMC 

=> MCD = yMC mà 2 góc này ở vị trí SLT => My // CD => AB // CD  (2)

Từ (1)(2) => CD // EF

10 tháng 7 2015

năm nay học toán phức tạp quá

thôi năm sau ứ học nữa 

mệt ... nghỉ!!!

6 tháng 12 2016

Ta có hình vẽ:

A B C M E F N x y

Câu d mình quên kí hiệu vuông góc rồi, bạn tự bổ sung nhé

a/ Xét tam giác AMB và tam giác AMC có:

AB = AC (GT)

BM = MC (GT)

AM : cạnh chung

=> tam giác AMB = tam giác AMC (c.c.c)

b/ Xét tam giác AEM và tam giác AFM có:

\(\widehat{E}\)=\(\widehat{F}\)=900

AM : cạnh chung

\(\widehat{EAM}\)=\(\widehat{FAM}\) ( vì tam giác AMB = tam giác AMC)

Vậy tam giác AEM = tam giác AFM (g.c.g)

=> AE = AF (2 cạnh tương ứng)

c/ Xét tam giác EBM và tam giác FCM có:

\(\widehat{E}\)=\(\widehat{F}\)=900

BM = MC (GT)

\(\widehat{B}\)=\(\widehat{C}\) (vì tam giác ABC cân có AB = AC)

Vậy tam giác EBM = tam giác FCM

(theo trường hợp cạnh huyền góc nhọn)

=> BE = FM (2 cạnh tương ứng) (1)

Ta có: EM: cạnh chung (2)

Ta có: 2 tam giác AEM và tam giác AFM đối xứng qua cạnh chung AM và có: \(\widehat{E}\)=\(\widehat{F}\)=900

=> \(\widehat{EMF}\) = 900 = \(\widehat{BEM}\) (3)

Từ (1),(2),(3) => tam giác BEM = tam giác EFM

=> \(\widehat{FEM}\)=\(\widehat{EMB}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> EF // BC

d/ Xét tam giác ABN và tam giác ACN có:

AB = AC (GT)

\(\widehat{BAN}\)=\(\widehat{CAN}\) (vì tam giác AMB = tam giác AMC)

AN: chung

=> tam giác ABN = tam giác ACN (c.g.c)

BN = CN ( 2 cạnh tương ứng)

Xét tam giác BMN và tam giác CMN có:

MN: chung

BM = MC (GT)

BN = CN (đã chứng minh)

=> tam giác BMN = tam giác CMN (c.c.c)

-Ta có: tam giác ABM = tam giác ACM (câu a)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{AMC}\) = 1800 (kề bù)

=> góc AMB = góc AMC = 900

-Ta có: tam giác BMN = tam giác CMN (đã chứng minh)

=> \(\widehat{BMN}\)=\(\widehat{CMN}\) (2 góc tương ứng)

\(\widehat{BMN}\)+\(\widehat{CMN}\)=1800 (kề bù)

=> góc BMN = góc CMN = 900

Ta có: \(\widehat{AMB}\)+\(\widehat{BMN}\)=900+900 = 1800

hay \(\widehat{AMC}\)+\(\widehat{CMN}\)=900+900 = 1800

hay A,M,N thẳng hàng

7 tháng 12 2016

cảm ơn bạn nhiều

 

a: \(\widehat{C}=90^0-30^0=60^0\)

c: Xét ΔCAD và ΔCMD có 
CA=CM

\(\widehat{ACD}=\widehat{MCD}\)

CD chung

Do đó: ΔCAD=ΔCMD

18 tháng 12 2016

a,b) A B C M D x y K 60* 30*

c) Vì CD là tia phân giác của \(\widehat{C}\) nên \(\widehat{ACD}=\widehat{MCD}=\frac{60}{2}=30\)*

Xét ΔACD và ΔMCD, ta có:

CA=CM (gt)

\(\widehat{ACD}=\widehat{MCD}=30\)* (cmt)

Chung cạnh CD

Do đó: ΔACD = ΔMCD (c.g.c)

d) Mk sửa lại đề là cắt xy tại K bạn nhé !!!

Vì AK || DC nên \(\widehat{ACD}=\widehat{CAK}=30\)* (So le trong)

Xét ΔDAC va ΔKCA, ta có:

\(\widehat{ACD}=\widehat{CAK}=30\)* (cmt)

Chung cạnh AC

\(\widehat{DAC}=\widehat{KCA}=90\)*

Do đó: ΔDAC = ΔKCA (g.c.g)

=> AK=CD (2 cạnh tương ứng).

e) Trong ΔAKC có: \(\widehat{CAK}+\widehat{AKC}+\widehat{KCA}=180\)*

\(\Rightarrow\widehat{AKC}=180-\left(\widehat{CAK}+\widehat{KCA}\right)\)

\(\Rightarrow\widehat{AKC}=180-\left(30+90\right)\)

haha \(\Rightarrow\widehat{AKC}=60\)* ok

 

17 tháng 12 2016

góc C=60 độ

 

a: \(\widehat{B}=\widehat{BAD}=\widehat{CAD}\)

c: \(\widehat{ABD}=\widehat{EDF}\)

\(\widehat{BAD}=\widehat{EDA}\)

mà \(\widehat{ABD}=\widehat{BAD}\)

nên \(\widehat{EDF}=\widehat{EDA}\)

hay DE là tia phân giác của góc ADC

\(\widehat{DEF}=\widehat{ADE}\)

\(\widehat{CEF}=\widehat{CAD}\)

mà \(\widehat{ADE}=\widehat{CAD}\)

nên \(\widehat{DEF}=\widehat{CEF}\)

hay EF là tia phân giác của góc EDC

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
DO đó: ΔAMB=ΔAMC

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nen AM là đường cao

b: Xét tứ giác AMCD có

N là trung điểm của AC

N là trung điểm của MD

Do đó: AMCD là hình bình hành

Suy ra: AD=MC và AD//MC

=>AD//BC

c: Xét ΔABC có

M la trung điểm của BC

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN=1/2AB=1/2AC

a: Xét ΔABM và ΔACM có

AB=AC
BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔCMD có

CH là đường cao

CH là đường trung tuyến

Do đo;ΔCMD cân tại C

mà CA là đườg cao

nên CA là phân giác của góc MCD