K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2020

Xét tứ giác ABFE có: \(AB//EF\)

\(\Rightarrow\)Tứ giác \(ABFE\)là hình thang 

Xét hình thang \(ABFE\)có: \(AC=CE\)\(CD//AB//EF\)

\(\Rightarrow CD\)là đường trung bình của hình thang ABFE 

\(\Rightarrow CD=\frac{1}{2}.\left(AB+EF\right)=\frac{1}{2}.\left(16+20\right)=\frac{1}{2}.36=18\)( cm )

Chứng minh tương tự ta có: tứ giác CDHG là hình thang và EF là đường trung bình của hình thang CDHG 

\(\Rightarrow EF=\frac{CD+GH}{2}\)

\(\Rightarrow CD+GH=2EF\)

\(\Rightarrow GH=2EF-CD=2.20-18=22\)( cm )

Vậy \(CD=18cm\)và \(GH=22cm\)

2 tháng 12 2021

Giải: 

Hình thang CDHG có: CE = GE , DF = HF ( gt )

=> EF là đường TB của hình thang.

=> EF =  \(\dfrac{CD+GH}{2}\) = \(\dfrac{12+16}{2}\) = 14 cm ( hay y = 14 cm )

Hình thang ABFE có: AC = CE, BD = DF ( gt )

=> CD là đường TB của hình thang trên. 

=> CD = \(\dfrac{AB+EF}{2}\)

mà CD = 12 cm, EF = 14 cm ( cmt )

=> AB = 12.2 - 14 = 10 cm ( hay x = 10 cm )

Vậy x = 10 cm, y = 14 cm

 

9 tháng 2 2017

1

9 tháng 2 2017

1 đó

21 tháng 4 2017

Bài giải:

AB // EF nên ABFE là hình thang CA = CE và DB = DF nên CD là đường trung bình của hình thang ABFE.

Do đó: CD = \(\dfrac{AB+EF}{2}\) = \(\dfrac{8+16}{2}\) = 12

Hay x = 12

Tương tự CDHG là hình thang, EF là đường trung bình của hình thang CDHG.

Nên EF = \(\dfrac{CD+GH}{2}\) => GH = 2EF -CD = 2.16 - 12

GH = 20 hay y = 20

Vậy x = 12, y = 20


2 tháng 11 2017

b)x3-2x2-4xy2+x

=x(x2-2x-4y2+1)

=x[(x2-2x+1)-4y2]

=x[(x-1)2-4y2]

=x(x-1-2y)(x-1+2y)

2 tháng 11 2017

c) (x+2)(x+3)(x+4)(x+5)-8

=[(x+2)(x+5)][(x+3)(x+4)]-8

=(x2+5x+2x+10)(x2+4x+3x+12)-8

=(x2+7x+10)(x2+7x+12)-8

đặt x2+7x+10 =a ta có

a(a+2)-8

=a2+2a-8

=a2+4a-2a-8

=(a2+4a)-(2a+8)

=a(a+4)-2(a+4)

=(a+4)(a-2)

thay a=x2+7x+10 ta đc

(x2+7x+10+4)(x2+7x+10-2)

=(x2+7x+14)(x2+7x+8)

bài 2 x3-x2y+3x-3y

=(x3-x2y)+(3x-3y)

=x2(x-y)+3(x-y)

=(x-y)(x2+3)

8 tháng 2 2017

1) \(\frac{x-y}{z-y}=-10\Leftrightarrow x-y=10\left(y-z\right)\)

\(\Leftrightarrow x-y=10y-10z\)

\(\Leftrightarrow x=11y-10z\)

Thay x=11y-10z vào biểu thức \(\frac{x-z}{y-z}\), ta có:

\(\frac{11y-10z-z}{y-z}=\frac{11y-11z}{y-z}=\frac{11\left(y-z\right)}{y-z}=11\)

Chá quá, có ghi nhìn không rõ đề

8 tháng 2 2017

2) \(2x^2=9x-4\)

\(\Leftrightarrow2x^2-9x+4=0\)

\(\Leftrightarrow2x^2-8x-x+4=0\)

\(\Leftrightarrow2x\left(x-4\right)-1\left(x-4\right)\)

\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow2x-1=0\) hoặc x-4=0

1) 2x-1=0<=>x=1/2

2)x-4=0<=>x=4(Loại)

=> x=1/2

17 tháng 9 2017

Bài 2 :

a ) \(25-20x+4x^2=0\)

\(\Leftrightarrow\left(5-2x\right)^2=0\)

\(\Leftrightarrow5-2x=0\Rightarrow x=\dfrac{5}{2}\)

Vậy \(x=\dfrac{5}{2}\)

17 tháng 9 2017

a,\(\left(-2x^2+3x\right)\left(x^2-x+3\right)\\ \Leftrightarrow-2x^4+2x^3-6x^2+3x^3-3x^2+9x\\ \Leftrightarrow-2x^4+5x^3-3x^2+3x\)

\(b,x\left(x-2\right)\left(x+2\right)-\left(x-3\right)\left(x^2+3x+9+6\right)+6\left(x+1\right)^2=15\\ \Leftrightarrow x\left(x^2-4\right)-\left(x^3-27\right)+6\left(x^2+2x+1\right)=15\\ \Leftrightarrow x^3-4x-x^3+27+6x^2+12x+6=15\\ \Leftrightarrow6x^2+8x+18=0\\ \Leftrightarrow6\left(x^2+\dfrac{4}{3}x+3\right)=0\\ \Leftrightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}=0\)

Với mọi x thì \(\left(x+\dfrac{2}{3}\right)^2\ge0\Rightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}>0\)

Do đó ko tìm đc giá trị nào của x thỏa mãn đề bài

Vậy..