Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các đoạn thẳng bằng nhau là: AB = AC ; OB = OC
Các góc bằng nhau là: ∠(BAO) = ∠(CAO) ; ∠(BOA) = ∠(COA)
∠(ABO) = ∠(ACO) = 90o
a, Chỉ ra |OI – OK| < IK < OI + OK => (1) và (k) luôn cắt nhau
b, Do OI=NK, OK=IM => OM=ON
Mặt khác OMCN là hình chữ nhật => OMCN là hình vuông
c, Gọi{L} = KB ∩ MC, {P} = IBNC => OKBI là Hình chữ nhật và BNMI là hình vuông
=> ∆BLC = ∆KOI
=> L B C ^ = O K I ^ = B I K ^
mà B I K ^ + I B A ^ = 90 0
L B C ^ + L B I ^ + I B A ^ = 180 0
d, Có OMCN là hình vuông cạnh a cố định
=> C cố định và AB luôn đi qua điểm C
Gọi P là trung điểm của AC, Q là trung điểm của BC, I là giao điểm của MN với DC
Vì CMDN là hình chữ nhật nên IC = IM = ID = IN
Tam giác CNI cân tại I nên (3)
Tam giác CNQ cân tại Q nên (4)
Vì AB ⊥ CD nên = 90 ° (5)
Từ (3), (4) và (5) suy ra: = 90 ° hay MN ⊥ QN
Vậy MN là tiếp tuyến của đường tròn đường kính BC
Tam giác CMI cân tại I nên (6)
Tam giác CMP cân tại P nên (7)
Vì AB ⊥ CD nên = 90 ° (8)
Từ (6), (7) và (8) suy ra: = 90 ° hay MN ⊥ PM
Vậy MN là tiếp tuyến của đường tròn đường kính AC
Các đoạn thẳng bằng nhau là: AB = AC ; OB = OC
Các góc bằng nhau là: ∠(BAO) = ∠(CAO) ; ∠(BOA) = ∠(COA)
∠ ( A B O ) = ∠ ( A C O ) = 90 °