Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : BE // AC
\(\Rightarrow\)^AEB = ^EAC
\(\Rightarrow\)^AEB = ^BAE (= ^EAC)
\(\Rightarrow\)△AEB cân tại B (ĐPCM)
b) Xét △ABC có AD là tia phân giác của góc A
\(\Rightarrow\)\(\frac{DB}{DC}=\frac{AB}{AC}\)
Mà AB = BE (△AEB cân tại B)
\(\Rightarrow\frac{DB}{DC}=\frac{BE}{AC}\)(ĐPCM)
c) Xét △ABC có AD là tia phân giác của góc A
\(\Rightarrow\)\(\frac{DB}{DC}=\frac{AB}{AC}\)(Đã chứng minh ở câu b)
d) Ta có :\(\frac{DB}{DC}=\frac{AB}{AC}\)
\(\Rightarrow\frac{DB}{3}=\frac{2,5}{5}\)
\(\Rightarrow DB=1,5\)
Vậy DB = 1,5 cm
EF giao nhau BC=P
Vì PC và FN cùng vuông góc với DC nên PC song song với FN
\(\Rightarrow\)∠EMP=∠ENF
Mà tứ giác MFNC có 3 góc vuông nên là hình chữ nhật
\(\Rightarrow\)∠CMN=∠MNF
\(\Rightarrow\)∠EMP=∠MNF
Tới đây thôi nha
Theo giả thiết ta có AD=DF=FB.
Có nghĩa là: D là trung điểm của AF, F là trung điểm của DB
Xét tam giác AFG, ta có:
- D là trung điểm của AF
- Mà DE // FG
\(\Rightarrow\)DE là đường trung bình, Vậy E là trung điểm
Xét hình thangDECB, ta có:
- F là trung điểm của DB
- FG // BC
=> G là trung điểm
=> GE =GC
Mà EG=GA (cmt)
=> GE=GC=GA
Tam giác AFG có DE là đường trung bình
=>DE=\(\frac{1}{2}\)FG
Ta có FG là đường trung bình cua hình thang DECB
=>FG = \(\frac{DE+BC}{2}\)
Ta phải chứng minh DE+FG=BC
\(\frac{1}{2}\)FG + \(\frac{DE+BC}{2}\) = BC
\(\frac{1}{2}\)(FG+DE+BC)=BC
FG+DE+BC= 2BC
FG+DE = 2BC - BC
FG+DE = BC
b) ta có FG= \(\frac{DE+BC}{2}\)
2FG= \(\frac{1}{2}\)FG +9
2FG - \(\frac{1}{2}\)FG = 9
\(\frac{3}{2}\)FG =9
=> FG=9:\(\frac{3}{2}\)
FG=6cm
mà FG=2DE
=>DE= \(\frac{FG}{2}\)=\(\frac{6}{2}\)=3cm