K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

ABCDE

a) Ta có : BE // AC

\(\Rightarrow\)^AEB = ^EAC

\(\Rightarrow\)^AEB = ^BAE (= ^EAC)

\(\Rightarrow\)△AEB cân tại B (ĐPCM)
b) Xét △ABC có AD là tia phân giác của góc A

\(\Rightarrow\)\(\frac{DB}{DC}=\frac{AB}{AC}\)

Mà AB = BE (△AEB cân tại B)

\(\Rightarrow\frac{DB}{DC}=\frac{BE}{AC}\)(ĐPCM)

c) Xét △ABC có AD là tia phân giác của góc A

\(\Rightarrow\)\(\frac{DB}{DC}=\frac{AB}{AC}\)(Đã chứng minh ở câu b)

d) Ta có :\(\frac{DB}{DC}=\frac{AB}{AC}\)

\(\Rightarrow\frac{DB}{3}=\frac{2,5}{5}\)

\(\Rightarrow DB=1,5\)

Vậy DB = 1,5 cm

28 tháng 8 2017

EF giao nhau BC=P

Vì PC và FN cùng vuông góc với DC nên PC song song với FN

\(\Rightarrow\)∠EMP=∠ENF

Mà tứ giác MFNC có 3 góc vuông nên là hình chữ nhật

\(\Rightarrow\)∠CMN=∠MNF

\(\Rightarrow\)∠EMP=∠MNF

Tới đây thôi nha

4 tháng 9 2014

A B C F D E G

      Theo giả thiết ta có AD=DF=FB.

      Có nghĩa là: D là trung điểm của AF, F là trung điểm của  DB

      Xét tam giác AFG, ta có:

  •       D là trung điểm của AF
  •       Mà DE // FG

\(\Rightarrow\)DE là đường trung bình, Vậy E là trung điểm

     Xét hình thangDECB, ta có:

  •      F là trung điểm của DB
  •      FG // BC

     => G là trung điểm

     => GE =GC

     Mà EG=GA (cmt)

     => GE=GC=GA

     Tam giác AFG có DE là đường trung bình

     =>DE=\(\frac{1}{2}\)FG

     Ta có FG là đường trung bình cua hình thang DECB

     =>FG = \(\frac{DE+BC}{2}\)

     Ta phải chứng minh DE+FG=BC

     \(\frac{1}{2}\)FG + \(\frac{DE+BC}{2}\) = BC

     \(\frac{1}{2}\)(FG+DE+BC)=BC

      FG+DE+BC= 2BC

      FG+DE = 2BC - BC

      FG+DE = BC

      b) ta có  FG= \(\frac{DE+BC}{2}\)

      2FG= \(\frac{1}{2}\)FG +9

      2FG - \(\frac{1}{2}\)FG = 9

      \(\frac{3}{2}\)FG =9

      => FG=9:\(\frac{3}{2}\)

       FG=6cm

       mà FG=2DE

       =>DE= \(\frac{FG}{2}\)=\(\frac{6}{2}\)=3cm