K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Ta có: AE+EB=AB

FC+FD=CD

mà AB=CD

và AE=FC

nên EB=FD

Xét tứ giác EBFD có 

EB//FD

EB=FD

DO đó: EBFD là hình bình hành

Suy ra: DE=BF

5 tháng 9 2023

a) Ta có : t/g ABCD là hbh 

Suy ra : AB//CD

Suy ra : góc FAE = góc AED ( 2 góc ở vị trí slt)

Mà  góc FAE = góc DAE ( AE là tia p/g của góc A )

Suy ra : góc DAE = góc DEA 

Suy ra : tam giác ADE cân tại D

b) CMTT : tam giác FBC cân tại B ( như phần a )

Suy ra : BC = BF 

c) Từ (a) suy ra : AD=DE ( tam giác ADE cân tại D )

 Mà BC=BF ( theo b )

Suy ra : BF=BC=AD=DE 

Suy ra : DE=BF

d) Từ c) suy ra : DE=BF

Ta có : AB = AF+FB

           CD=DE+CE

Mà : DE=BF ; AB=CD ( ABCD là hbh )

Suy ra : AF=CE

Xét t/g AECF có : AF//CE ( AB//CD)

                           AF=CE ( cmt )

Suy ra : t/g AECF là hbh. 

a: Ta có: AE+EB=AB

DF+FC=DC

mà AE=FC

và AB=DC

nên EB=DF

Xét tứ giác EBFD có 

EB//DF

EB=DF

Do đó: EBFD là hình bình hành

Suy ra: DE=BF

b: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

31 tháng 10 2020

A N B F C M D E O

a) Ta có : tứ giác ABCD là hình bình hành (gt)

\(\Rightarrow\)2 đường chéo cắt nhau tại trung điểm của mỗi đường

\(\Rightarrow\)O là trung điểm của AC (1)

và O là trung điểm của BD

\(\Rightarrow OB=OD\)

mà \(DE=BF\left(gt\right)\)

\(\Rightarrow OB-BF=OD-DE\)

\(\Rightarrow OF=OE\)

\(\Rightarrow\)O là trung điểm của EF (2)

Từ (1) và (2) \(\Rightarrow\)tứ giác AECF là hinh bình hành

b) Ta có : tứ giác AECF là hinh bình hành (cma)

\(\Rightarrow AE//CF\)

\(\Rightarrow AM//CN\left(3\right)\)

Ta có : tứ giác ABCD là hinh bình hành (gt)

\(\Rightarrow AB//CD\)

\(\Rightarrow AN//CM\left(4\right)\)

TỪ (3) và (4) \(\Rightarrow\)tứ giác ANCM là hình bình hành 

\(\Rightarrow AM=CN\)

c) Ta có : tứ giác ANMC là hinh bình hành (cmb)

\(\Rightarrow\)2 đường chéo cắt nhau tại trung điểm của mỗi đường

\(\Rightarrow\)O là trung điểm của NM

và O là trung điểm của AC

mà O là trung điểm của BD

\(\Rightarrow\)AC , NM , DB cùng đi qua 1 điểm

23 tháng 10 2021

a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có 

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB