Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+\frac{4b}{c^2}\right)\left(b+\frac{4c}{a^2}\right)\left(c+\frac{4a}{b^2}\right)\ge2\sqrt{\frac{4ab}{c^2}}.2\sqrt{\frac{4bc}{a^2}}.2\sqrt{\frac{4ac}{b^2}}=64\)
Dấu "=" xảy ra khi \(a=b=c=2\)
\(\frac{a^3}{b}+ab\ge2a^2\) ; \(\frac{b^3}{c}+bc\ge2b^2\); \(\frac{c^3}{a}+ac\ge2c^2\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}35x-28y=21\\35x-45y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17y=-19\\5x-4y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{19}{17}\\x=-\dfrac{5}{17}\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{8}{y}=18\\\dfrac{10}{x}+\dfrac{8}{y}=102\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{x}=120\\\dfrac{1}{x}-\dfrac{8}{y}=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{120}\\y=-\dfrac{44}{39}\end{matrix}\right.\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{30}{x-1}+\dfrac{3}{y+2}=3\\\dfrac{25}{x-1}+\dfrac{3}{y+2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x-1}=1\\\dfrac{10}{y-1}+\dfrac{1}{y+2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=5\\\dfrac{1}{y+2}+2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=-3\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{135}{2x-y}+\dfrac{160}{x+3y}=35\\\dfrac{135}{2x-y}-\dfrac{144}{x+3y}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3y=8\\2x-y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+6y=16\\2x-y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=5\end{matrix}\right.\)
Ta có:
\(a^3+b^3+c^3=3abc\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Do a+b+c khác ) nên:
\(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\frac{1}{2}[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2]=0\)
\(\Rightarrow a=b=c\)
Do đó:
Q=\(\frac{a^2+3b^2+5c^2}{\left(a+b+c\right)^2}=\frac{9a^2}{9a^2}=1\)
có giá trị ko đổi
Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)
Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)
Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:
Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:
\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)
Đây là điều hiển nhiên.
a,\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)
ĐK: \(x+y\ge0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+\frac{2xy}{x+y}=1\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)
Đặt \(\hept{\begin{cases}x+y=a\\2xy=b\end{cases}\left(a\ge0\right)}\)
\(\left(1\right)\Leftrightarrow a^2-b+\frac{b}{a}=1\)
\(\Leftrightarrow a^3-ab-a+b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a^2+a-b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x+y=1\left(3\right)\\\left(x+y\right)^2+\left(x+y\right)-xy=0\left(4\right)\end{cases}}\)
Thay (3) vào (2) ta được
\(x^2-y=1\Leftrightarrow y=x^2-1\)
\(\Rightarrow1-x=x^2-1\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{cases}}\)
Giải (4)
Ta có \(\left(x+y\right)^2\ge4xy\Rightarrow\left(x+y\right)^2-xy>0\)
do đó (4) không xảy ra
Vậy..........
Mình chưa học cách chứng minh mệnh đề nhưng mk chứng minh được hệ thức Vi-et:
\(ax^2+bx+c=0\)
\(\Delta=b^2-4ac\)
để phương trình có 2 nghiệm thì \(\Delta\ge0\)
\(\Rightarrow b^2-4ac\ge0\)
phương trình có 2 nghiệm là
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}\)
Ta có
\(x_1+x_2=\frac{-b+\sqrt{\Delta}}{2a}+\frac{-b-\sqrt{\Delta}}{2a}\)
\(=\frac{-2b}{2a}=-\frac{b}{a}\)
\(x_1.x_2=\frac{-b+\sqrt{\Delta}}{2a}.\frac{-b-\sqrt{\Delta}}{2a}\)
\(=\frac{\left(-b+\sqrt{\Delta}\right).\left(-b-\sqrt{\Delta}\right)}{2a.2a}\)
\(=\frac{b^2-\Delta}{4a^2}\)
\(=\frac{b^2-\left(b^2-4ac\right)}{4a^2}\)
\(=\frac{4ac}{4a^2}=\frac{c}{a}\)
với các số thực dương a,b,c áp dụng BDT Cauchi ta có:
\(\frac{a^4b}{a^2+1}=a^2b-\frac{a^2b}{a^2+1}\geq a^2b-\frac{a^2b}{2a}=a^2b-\frac{ab}{2}\)
Chứng minh tương tự ta cũng có:
\(\frac{b^4c}{b^2+1}\ge b^2c-\frac{bc}{2},\frac{c^4a}{c^2+1}\ge c^2a-\frac{ca}{2}\)
ta suy ra:
\(\frac{a^4b}{a^2+1}+\frac{b^4c}{b^2+1}+\frac{c^4a}{c^2+1}\ge a^2b+b^2c+c^2a-\frac{1}{2}\left(ab+bc+ca\right)\)
áp dụng bdt Cauchy lần nữa, ta có:
\(a^2b+a^2b+b^2c\ge3ab\sqrt[3]{abc}=3ab\)
tương tự ta có:
\(b^2c+b^2c+c^2a\ge3bc\\ c^2a+c^2a+a^2b\ge3ca\)
Vậy:
\(\frac{a^4b}{a^2+1}+\frac{b^4c}{b^2+1}+\frac{c^4a}{c^2+1}\ge a^2b+b^2c+c^2a-\frac{1}{2}\left(ab+bc+ca\right)\ge\frac{1}{2}\left(ab+bc+ca\right)\\ \ge\frac{3}{2}\sqrt[3]{a^2b^2c^2}=\frac{3}{2}\)
Dấu bằng xảy ra khi\(a=b=c=1\)