K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2021

\(\left\{{}\begin{matrix}D=m^2-4\\D_x=9m-32\\D_y=8m-9\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi \(D\ne0\Leftrightarrow m^2-4\ne0\Leftrightarrow m\ne\pm2\)

Hệ vô nghiệm khi \(\left\{{}\begin{matrix}D=0\\\left[{}\begin{matrix}D_x\ne0\\D_y\ne0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\\left[{}\begin{matrix}m\ne\dfrac{32}{9}\\m\ne\dfrac{9}{8}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow m=\pm2\)

6 tháng 1 2021

\(\left\{{}\begin{matrix}x+my=9\\mx-3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9-my\\m\left(9-my\right)-3y=4\end{matrix}\right.\)(*)

(*) <=> \(9m-m^2y-3y=4\)

<=> \(-y\left(m^2+3\right)=4-9m\) 

Vì \(m^2+3\ge3\) >0 với mọi m

=> m2 + 3 khác 0

=> luôn có nghiệm y = \(\dfrac{9m-4}{m^2+3}\) với mọi m

b) Khi đó x= \(9-m.\dfrac{9m-4}{m^2+3}=\dfrac{9m^2+27-9m^2+4m}{m^2+3}=\dfrac{4m^2+27}{m^2+3}\)

Để \(x-3y=\dfrac{28}{m^2+3}-3\)

=> \(4m+27-27m+12=28-3m^2+9\)

<=> \(3m^2-3m-20m+20=0\)

<=> \(3m\left(m-1\right)-20\left(m-1\right)=0\) 

<=> \(\left(3m-20\right)\left(m-1\right)=0\)

<=> \(\left[{}\begin{matrix}m=\dfrac{20}{3}\\m=1\end{matrix}\right.\) 

NV
5 tháng 1 2021

a. Hệ có nghiệm duy nhất \(\Rightarrow m\ne\pm2\)

\(\left\{{}\begin{matrix}mx+4y=10-m\\mx+m^2y=4m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}mx+4y=10-m\\\left(m^2-4\right)y=5m-10\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{5}{m+2}\\x=\dfrac{-m+8}{m+2}\end{matrix}\right.\)

Để \(x>0,y>0\Rightarrow\left\{{}\begin{matrix}\dfrac{5}{m+2}>0\\\dfrac{-m+8}{m+2}>0\end{matrix}\right.\) \(\Rightarrow-2< m< 8\)

\(\Rightarrow m=\left\{-1;0;...;7\right\}\)

b. Hệ có nghiệm là các số dương khi \(-2< m< 8\)

Tên vietjack mà không làm được thì mang tiếng người ta quá

10 tháng 2 2021

EM CÓ BIẾT GÌ ĐÂU NÓ TỰ ĐẶT TÊN THẾ MÀ

NV
21 tháng 2 2021

Xét \(x^2+2x+a=0\) (1) và \(x^2-4x-6a=0\) (2)

Do hệ số của \(x^2\) đều dương nên BPT đã cho có nghiệm khi (1) và (2) đều có nghiệm

Gọi các nghiệm của (1) và (2) lần lượt là \(x_1\le x_2;x_3\le x_4\Rightarrow\left\{{}\begin{matrix}x_1=-1-\sqrt{1-a}\\x_2=-1+\sqrt{1-a}\\x_3=2-\sqrt{6a+4}\\x_4=2+\sqrt{6a+4}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\Delta'_1=1-a\ge0\\\Delta'_2=4+6a\ge0\end{matrix}\right.\) \(\Rightarrow-\dfrac{2}{3}\le a\le1\)

TH1: \(\left\{{}\begin{matrix}\Delta'_1=0\\x_3\le x_{1;2}\le x_4\end{matrix}\right.\) \(\Leftrightarrow a=1\) thỏa mãn

TH2: \(\left\{{}\begin{matrix}\Delta'_2=0\\x_1\le x_{3;4}\le x_2\end{matrix}\right.\) \(\Leftrightarrow a=-\dfrac{2}{3}\) thỏa mãn

TH3: khi \(-\dfrac{2}{3}< a< 1\) \(\Leftrightarrow\left(1\right)\) và (2) đều có 2 nghiệm pb

Khi đó \(\left[{}\begin{matrix}D_1=\left[x_1;x_2\right]\\D_2=\left[x_3;x_4\right]\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi và chỉ khi \(D_1\) và \(D_2\) giao nhau tại đúng 1 phần tử

\(\Leftrightarrow\left[{}\begin{matrix}x_1=x_4\\x_2=x_3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-1-\sqrt{1-a}=2+\sqrt{6a+4}\left(vô-nghiệm\right)\\-1+\sqrt{1-a}=2-\sqrt{6a+4}\end{matrix}\right.\)

\(\Leftrightarrow a=0\)

Vậy \(a=\left\{-\dfrac{2}{3};0;1\right\}\)

TH1: x>0

Hệ phương trình sẽ trở thành \(\left\{{}\begin{matrix}2x-y=1\\mx+y=m+1\end{matrix}\right.\)

Để hệ có nghiệm duy nhất thì \(\dfrac{2}{m}\ne-\dfrac{1}{1}=-1\)

=>\(m\ne-2\)

TH2: x<0

Hệ phương trình sẽ trở thành:

\(\left\{{}\begin{matrix}-2x-y=1\\mx+y=m+1\end{matrix}\right.\)

Hệ phương trình có nghiệm duy nhất khi \(-\dfrac{2}{m}\ne-\dfrac{1}{1}=-1\)

=>m<>2

3 tháng 5 2017

a) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{m}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Xét \(\dfrac{m}{3}=\dfrac{-2}{2}\Leftrightarrow m=-3\) .
Dễ thấy \(m=-3\) thỏa mãn: \(\dfrac{-3}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Vậy \(m=-3\) hệ vô nghiệm.

3 tháng 5 2017

b) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{2}{1}=\dfrac{-m}{1}\ne\dfrac{5}{7}\)
Xét: \(\dfrac{2}{1}=\dfrac{-m}{1}\Leftrightarrow m=-2\)
Do \(\dfrac{2}{1}=\dfrac{-\left(-2\right)}{1}\ne\dfrac{5}{7}\) thỏa mãn nên m = - 2 hệ phương trình vô nghiệm.

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Bài 1:

Khi $m=1$ thì HPT trở thành:

\(\left\{\begin{matrix} x-2y=-1\\ 2x+y=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x-4y=-2\\ 2x+y=2\end{matrix}\right.\)

\(\Rightarrow (2x+y)-(2x-4y)=2-(-2)\)

\(\Leftrightarrow 5y=4\Rightarrow y=\frac{4}{5}\)

\(x=\frac{2-y}{2}=\frac{2-\frac{4}{5}}{2}=\frac{3}{5}\)

Vậy ...........

b)

HPT \(\Leftrightarrow \left\{\begin{matrix} mx-2y=m-2\\ y=m+1-2x\end{matrix}\right.\Rightarrow mx-2(m+1-2x)=m-2\)

\(\Leftrightarrow x(m+4)=3m(*)\)

Để HPT ban đầu có bộ nghiệm (x,y) duy nhất thì PT $(*)$ phải có nghiệm $x$ duy nhất. Điều này xảy ra khi $m+4\neq 0$ hay $m\neq -4$

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Bài 2:
a)

Khi $m=2$ thì hệ trở thành:
\(\left\{\begin{matrix} x+2y=1\\ 2x+y=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x+4y=2\\ 2x+y=1\end{matrix}\right.\)

\(\Rightarrow (2x+4y)-(2x+y)=2-1\)

\(\Leftrightarrow 3y=1\Rightarrow y=\frac{1}{3}\)

Khi đó: \(x=1-2y=1-2.\frac{1}{3}=\frac{1}{3}\)

Vậy HPT có bộ nghiệm duy nhất $(x,y)=(\frac{1}{3}, \frac{1}{3})$

b)

HPT \(\Leftrightarrow \left\{\begin{matrix} x=1-my\\ mx+y=1\end{matrix}\right.\Rightarrow m(1-my)+y=1\)

\(\Leftrightarrow y(1-m^2)=1-m(*)\)

Để HPT ban đầu có nghiệm duy nhất thì PT $(*)$ cũng phải có nghiệm duy nhất. Điều này xảy ra khi \(1-m^2\neq 0\Leftrightarrow m\neq \pm 1\)

Khi đó:
\(y=\frac{1-m}{1-m^2}=\frac{1}{1+m}\)

\(x=1-my=1-\frac{m}{m+1}=\frac{1}{m+1}\)

Vậy HPT có nghiệm \((x,y)=(\frac{1}{m+1}, \frac{1}{m+1})\)

Để \(x,y>0\Leftrightarrow \frac{1}{m+1}>0\Leftrightarrow m>-1\)

Kết hợp những điều vừa tìm được suy ra $m>-1$ và $m\neq 1$ thì thỏa mãn.