Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
jhyfhregrjhesdftruiejxfhrjehxgmjfd;j03169543256545449526u4tnkuyfnikuyf42b 4r 6e524brd62v4utq7w8e9r96f5d4s1d323g5t5esd232df2f5e2s2sd
Xét hệ phương trình :\(\hept{\begin{cases}mx-y=1\\\frac{x}{2}-\frac{y}{3}=334\end{cases}}\)
a, Khi m = 1 ta có hệ phương trình : \(\hept{\begin{cases}x-y=1\\3x-2y=2004\end{cases}\Leftrightarrow\hept{\begin{cases}x=2002\\y=2001\end{cases}}}\)
b, \(\hept{\begin{cases}mx-y=1\\\frac{x}{2}-\frac{y}{3}=334\end{cases}\Leftrightarrow\hept{\begin{cases}mx-y=1\\3x-2y=2004\end{cases}}}\)
Hệ phương trình vô nghiệm khi \(\frac{m}{3}=\frac{1}{2}\ne\frac{1}{2004}\Leftrightarrow m=\frac{3}{2}\)
từ phương trình thứ nhất ta có :
\(y=-x+3m+2\) thế xuống phương trình dười : \(3x+2x-6m-4=11-m\Leftrightarrow x=3+m\Rightarrow y=2m-1\)
b. ta có \(x^2-y^2=\left(m+3\right)^2-\left(2m-1\right)^2=-3m^2+10m+8=-3\left(m-\frac{5}{3}\right)^2+\frac{49}{3}\le\frac{49}{3}\)
Dấu bằng xảy ra khi m=5/3
a. Thay m = 1 vào hệ ta dc: \(\hept{\begin{cases}x-y=1\\\frac{x}{2}+\frac{y}{3}=8\end{cases}}\) <=> \(\hept{\begin{cases}x-y=1\\3x+2y=48\end{cases}}\) <=> \(\hept{\begin{cases}3x-3y=3\\3x+2y=48\end{cases}}\)<=> \(\hept{\begin{cases}x-y=1\\-5y=-45\end{cases}}\)<=> \(\hept{\begin{cases}x=y+1=9+1=10\\y=9\end{cases}}\)
Vậy no cua hpt khi m = 1 là: (10;9)
b. Xét hệ: \(\hept{\begin{cases}mx-y=1\\3x+2y=48\end{cases}}\) <=> \(\hept{\begin{cases}2mx-2y=2\\3x+2y=48\end{cases}}\)<=> \(\hept{\begin{cases}\left(2m+3\right)x=50\left(1\right)\\3x+2y=48\end{cases}}\)
Hệ pt vô nghiệm <=> (1) vô nghiệm 2m + 3 = 0 <=> m = \(-\frac{3}{2}\)
Vậy khi m = -3/2 thì hệ pt vô nghiệm
a,thay m giải như bình thường
b,đề hệ có no duy nhát thì \(\frac{a}{a'}\ne\frac{b}{b'}\)
hay\(\frac{m-1}{m}\ne1\)
=>đk của m rồi tìm x và y theo m rồi cho tmđk đề bài r đối chiếu với đk
=>m
cho hệ phương trình \(\hept{\begin{cases}mx+y=10\\2x-3y=6\end{cases}}\)
a,Khi m= 1,ta có hệ phương trình \(\hept{\begin{cases}x+y=10\\2x-3y=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{36}{5}\\y=\frac{14}{5}\end{cases}}\)
b, hệ phương trình vô nghiệm khi\(\frac{m}{2}=\frac{1}{-3}\ne\frac{10}{6}\Leftrightarrow m=-\frac{2}{3}\)