K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left\{{}\begin{matrix}8x-y=6\\x^2-y=-6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}8x-y-x^2+y=6+6\\8x-y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2-8x=-12\\y=8x-6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2-8x+12=0\\y=8x-6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x-2\right)\left(x-6\right)=0\\y=8x-6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\in\left\{2;6\right\}\\y=8x-6\end{matrix}\right.\)

Khi x=2 thì \(y=8\cdot2-6=16-6=10\)
Khi x=6 thì \(y=8\cdot6-6=42\)

Bài 2:

a: Vì (d) đi qua A,B nên ta có hệ:

3a+b=2 và -a+b=-6

=>a=2 và b=-4

=>y=2x-4

b: Theo đề, ta có hệ:

3a+b=0 và 0a+b=-6

=>a=2 và b=-6

18 tháng 4 2019

2) 

a) ĐK: \(2x^2-8x-12\ge0\)(1)

Nhân 2 cả hai vế ta có:

\(2x^2-8x-12=2\sqrt{2x^2-8x-12}\)

Đặt: \(\sqrt{2x^2-8x-12}=t\left(t\ge0\right)\)

Ta có phương trình: \(t^2=2t\Leftrightarrow\orbr{\begin{cases}t=0\\t=2\end{cases}}\)(tm)

+) Với t=0  ta có:\(\sqrt{2x^2-8x-12}=0\Leftrightarrow2x^2-8x-12=0\Leftrightarrow x^2-4x-6=0\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{10}\\x=2-\sqrt{10}\end{cases}}\)( thỏa mãn đk (1))

+) Với t=2 ta có: \(\sqrt{2x^2-8x-12}=2\Leftrightarrow2x^2-8x-12=4\Leftrightarrow x^2-4x-8=\Leftrightarrow\orbr{\begin{cases}x=2+2\sqrt{3}\\x=2-2\sqrt{3}\end{cases}}\)( THỎA MÃN đk (1))

vậy ...

b) pt <=> \(\left(4x+1\right)\left(3x+2\right)\left(12x-1\right)\left(x+1\right)=4\)

<=> \(\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)=4\)

Đặt :\(12x^2+11x+2=t\)

Ta có pt: \(t\left(t-3\right)=4\Leftrightarrow t^2-3t-4=0\Leftrightarrow\orbr{\begin{cases}t=4\\t=-1\end{cases}}\)

Với t=4 ta có: ....

Với t=-1 ta có:...

Em tự làm tiếp nhé

8 tháng 1 2017

\(\hept{\begin{cases}x^2+y^2+4xy=6\left(1\right)\\4x^2+16=6y+14x\left(2\right)\end{cases}}\)

Lấy (1) + (2) vế theo vế rồi chuyển tất cả sang vế trái ta được

5x2 + y2 + 4xy + 10 - 6y -14x = 0

<=> (4x2 + 4xy + y2) - 6(2x + y) + 9 + (x2 - 2x + 1) = 0

<=> (2x + y)2 - 6(2x + y) + 9 + (x - 1)2 = 0

<=> ( 2x + y - 3)2 + (x - 1)2 = 0

\(\Leftrightarrow\hept{\begin{cases}2x+y-3=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

8 tháng 1 2017

Khó lắm đó bạn !!!

7 tháng 12 2020

\(\hept{\begin{cases}x^3+x+2=2y\left(1\right)\\3\left(x^2+x\right)=y^3-y\left(2\right)\end{cases}\Rightarrow x^3+x+2+3\left(x^2+x\right)=2y+y^3-y}\)

\(\Leftrightarrow x^3+3x^2+4x+2=y^3+y\Leftrightarrow\left(x+1\right)^3+\left(x+1\right)=y^3+y\)

\(\Leftrightarrow\left(x+1\right)^3-y^3+\left(x+1-y\right)=0\)

\(\Leftrightarrow\left(x+1-y\right)\left[\left(x+1\right)^2+\left(x+1\right)y+y^2+1\right]=0\)

\(\Leftrightarrow y=x+1\)thay vào (1):

\(x^3+x+2=2\left(x+1\right)\Leftrightarrow x^3-x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

Bạn tự tìm nốt nhé

7 tháng 12 2020

\(8x^3+2xy^2=y^6+y^4\Leftrightarrow\left(\frac{2x}{y}\right)^3+\frac{2x}{y}=y^3+y\)(chia cả 2 vế cho y3)

\(\Rightarrow\frac{2x}{y}=y\)(giống ý trước)

\(\Rightarrow y^2=2x\)thay vào pt(2)

\(\sqrt{x+2}+\sqrt{2x+5}=5\Leftrightarrow\sqrt{x+2}-2+\sqrt{2x+5}-3=0\)

\(\Leftrightarrow\frac{x+2-4}{\sqrt{x+2}+2}+\frac{2x+5-9}{\sqrt{2x+5}+3}=0\)

\(\Leftrightarrow\left(x-2\right)\left[\frac{1}{\sqrt{x+2}+2}+\frac{2}{\sqrt{2x+5}+3}\right]=0\Leftrightarrow x=2\Rightarrow y=\pm2\)