K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2021

- Từ PT ( II ) ta có : \(xy\left(x+y\right)=2xy=4m^2-2m\)

\(\Rightarrow xy=2m^2-m\)

- Hệ PT trên có nghiệm là nghiệm của PT :

\(x^2-2x+2m^2-m=0\) ( I )

Có : \(\Delta^,=b^{,2}-ac=1-\left(2m^2-m\right)=-2m^2+m-1\)

- Để PT ( i ) có nghiệm \(\Leftrightarrow\Delta^,>0\)

\(\Leftrightarrow-2m^2+m-1>0\)

Vậy không tồn tại m để hệ phương trình có nghiệm .

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Phương trình (i) có nghiệm $\Leftrightarrow \Delta\geq 0$ chứ không phải $>0$ bạn nhé. 

12 tháng 3 2021

Bài 1 \(\left\{{}\begin{matrix}x^2-3x-4\le0\\\left(m-1\right)x\ge2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le4\\\left(m-1\right)x\ge2\end{matrix}\right.\)

Nếu m = 1, hệ vô nghiệm

Nếu m ≠ 1, hệ tương đương

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\x\le\dfrac{2}{m-1}\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\x\ge\dfrac{2}{m-1}\end{matrix}\right.\end{matrix}\right.\)

Hệ có nghiệm khi một trong hai hệ trong hệ ngoặc vuông có nghiệm ⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\\dfrac{2}{m-1}\ge-1\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\\dfrac{2}{m-1}\le4\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\-2\le1-m\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\2\le4m-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1\le m< 1\\\dfrac{3}{2}\le m\le4\end{matrix}\right.\)

 

11 tháng 12 2020

\(\left\{{}\begin{matrix}x+y=2m-1\left(1\right)\\x^2+y^2=m^2+2m-3\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left(x+y\right)^2-2xy=m^2+2m-3\)

\(\Leftrightarrow\left(2m-1\right)^2-m^2-2m+3=2xy\)

\(\Leftrightarrow2xy=3m^2-6m+4\)

\(P_{min}\Leftrightarrow3m^2-6m+4\left(min\right)\)

\(3\left(m^2-2m+\dfrac{4}{3}\right)=3\left(m^2-2m+1+\dfrac{1}{3}\right)=3\left[\left(m-1\right)^2+\dfrac{1}{3}\right]=3\left(m-1\right)^2+1\ge1\)

\("="\Leftrightarrow m=1\)

24 tháng 8 2021

nhân 2vao pt (1) rồi cộng với pt 2 ta có:

x^2+y^2+2xy+5(x+y)=6+m

=(x+y)^2+5(x+y)=6+m

=t^2+5t=6+m

=t^2+5t-6-m

pt co nghiem duy nhat khi delta=0

tự giải =)))))))))))))))))))))))))))))))))

16 tháng 5 2021

\(x^2-5x+1=m-2\sqrt{6+5x-x^2}\) (đk: \(x\in\left[-1;6\right]\))

\(\Leftrightarrow7-\left(6+5x-x^2\right)=m-2\sqrt{6+5x-x^2}\)

\(Đặt \) \(a=\sqrt{6+5x-x^2}\left(a\ge0\right)\)

(bình phương cái vừa đặt lên, tìm được \(\Delta_x=49-4a^2\) nên với mỗi \(a\in\left[0;\dfrac{7}{2}\right]\backslash\left\{\dfrac{7}{2}\right\}\) sẽ có 2 nghiệm x phân biệt)

pttt: \(7-a^2=m-2a\)

\(\Leftrightarrow a^2-2a-7=-m\) (*)

BBT \(f\left(x\right)=a^2-2a-7\) với \(a\in\left[0;\dfrac{7}{2}\right]\backslash\left\{\dfrac{7}{2}\right\}\)

 

a 0 1 7/2 f(a) -8 -7 7/4 -m Số nghiệm của pt (*) là số giao điểm của đồ thị f(a) và đường thẳng d=-m

nên để pt ban đầu có 2 nghiệm x phân biệt <=>pt (*) có 1 nghiệm <=> \(\left[{}\begin{matrix}-m=-8\\-7< -m< \dfrac{7}{4}\end{matrix}\right.\) hay \(\left[{}\begin{matrix}m=8\\\dfrac{7}{4}< m< 7\end{matrix}\right.\)
Ý A

 

16 tháng 5 2021

\(f\left(a\right)=a^2-2a-7\) chứ không phải f(x) đâu nha

22 tháng 1 2021

\(\left\{{}\begin{matrix}x^2-3x-4< 0\\\left(m-1\right)x-2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(x-4\right)< 0\\\left(m-1\right)x-2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1< x< 4\\\left(m-1\right)x-2>0\end{matrix}\right.\left(1\right)\)

TH1: \(m< 1\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}-1< x< 4\\x< \dfrac{2}{m-1}\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi \(\dfrac{2}{m-1}>-1\Leftrightarrow2< -m+1\Leftrightarrow m< -1\)

\(\Rightarrow m< -1\)

TH2: \(m=1\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}-1< x< 4\\-2>0\end{matrix}\right.\left(vn\right)\)

TH3: \(m>1\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}-1< x< 4\\x>\dfrac{2}{m-1}\end{matrix}\right.\)

\(\dfrac{2}{m-1}< 4\Leftrightarrow4m-4>2\Leftrightarrow m>\dfrac{3}{2}\)

\(\Rightarrow m>\dfrac{3}{2}\)

Vậy \(m< -1;m>\dfrac{3}{2}\)

3 tháng 5 2017

a) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{m}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Xét \(\dfrac{m}{3}=\dfrac{-2}{2}\Leftrightarrow m=-3\) .
Dễ thấy \(m=-3\) thỏa mãn: \(\dfrac{-3}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Vậy \(m=-3\) hệ vô nghiệm.

3 tháng 5 2017

b) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{2}{1}=\dfrac{-m}{1}\ne\dfrac{5}{7}\)
Xét: \(\dfrac{2}{1}=\dfrac{-m}{1}\Leftrightarrow m=-2\)
Do \(\dfrac{2}{1}=\dfrac{-\left(-2\right)}{1}\ne\dfrac{5}{7}\) thỏa mãn nên m = - 2 hệ phương trình vô nghiệm.

NV
16 tháng 12 2020

1.

\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)

Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:

\(t^2-3m.t+m=0\) (1) 

Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:

TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)

\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)

\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)

TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)

\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)

\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)

Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)

2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)

Ko tồn tại m thỏa mãn

Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?

 

16 tháng 12 2020

giải thích cho em bài 1 cái đoạn TH1,TH2 với ạ