Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)
\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)
Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.
b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)
\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)
\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)
Lời giải:
Ta có $x+my=2\Rightarrow x=2-my$. Thay vào PT $(2)$:
$m(2-my)-3my=3m+3$
$\Leftrightarrow -y(m^2+3m)=m+3$
$\Leftrightarrow -ym(m+3)=m+3(*)$
Để hệ PT ban đầu có nghiệm thì $(*)$ có nghiệm $y$
Điều này xảy ra khi $m(m+3)\neq 0\Leftrightarrow m\neq 0;-3$
Khi đó:
$y=\frac{m+3}{-m(m+3)}=-\frac{1}{m}$
$x=2-my=3$
Như vậy:
$y=8x^2$
$\Leftrightarrow \frac{-1}{m}=72\Leftrightarrow m=-72$
Vậy........