K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2020

\(\hept{\begin{cases}x-my=1\\mx+y=1\end{cases}}\)

<=> \(\hept{\begin{cases}mx-m^2y=m\\mx+y=1\end{cases}}\)

<=> \(\hept{\begin{cases}x-my=1\\\left(1+m^2\right)y=1-m\end{cases}}\)

<=> \(\hept{\begin{cases}x=1+my\\y=\frac{1-m}{m^2+1}\end{cases}}\)

<=> \(\hept{\begin{cases}x=1+m.\frac{1-m}{m^2+1}=\frac{1+m}{m^2+1}\\y=\frac{1-m}{m^2+1}\end{cases}}\)

Vậy với mọi m hệ luôn có nghiệm duy nhất.

20 tháng 5 2020

\(\left\{{}\begin{matrix}x_0-my_0=2-4m\\mx_0+y_0=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0-2=m\left(y_0-4\right)\\y_0-1=m\left(3-x_0\right)\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left(x_0-2\right)\left(3-x_0\right)=m\left(y_0-4\right)\left(3-x_0\right)\\\left(y_0-1\right)\left(y_0-4\right)=m\left(y_0-4\right)\left(3-x_0\right)\end{matrix}\right.\)

\(\Rightarrow\left(x_0-2\right)\left(3-x_0\right)=\left(y_0-1\right)\left(y_0-4\right)\)

20 tháng 4 2020

ax8=18

5 tháng 7 2021

\(\hept{\begin{cases}x-my=2\left(1\right)\\mx+2y=1\left(2\right)\end{cases}}\)

Từ (1)\(\Rightarrow x=2+my\)(3)

Thế (3) vào (2) ta được: 

\(m\left(2+my\right)+2y=1\)

\(\Rightarrow2m+m^2y+2y=1\)

\(\Rightarrow y\left(m^2+2\right)=1-2m\)

Hệ phương trình có nghiệm duy nhất \(\Leftrightarrow m^2+2\ne0\)

                                                             \(\Leftrightarrow m^2\ne-2\)(luôn đúng)

Vậy hệ phương trình luôn có nghiệm duy nhất với mọi tham số m