K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 6 2019

a/ Bạn tự giải

b/ \(\left\{{}\begin{matrix}mx-y=5\\3x+my=5\end{matrix}\right.\)

Để hệ có nghiệm \(\Rightarrow m^2+3\ne0\) (luôn đúng)

Khi đó hệ tương đương: \(\left\{{}\begin{matrix}m^2x-my=5m\\3x+my=5\end{matrix}\right.\)

\(\Rightarrow\left(m^2+3\right)x=5m+5\Rightarrow x=\frac{5m+5}{m^2+3}\)

Thay vào pt đầu: \(y=mx-5=\frac{m\left(5m+5\right)}{m^2+3}-5=\frac{5m-15}{m^2+3}\)

\(x+y< 1\Leftrightarrow\frac{5m+5}{m^2+3}+\frac{5m-15}{m^2+3}< 1\Leftrightarrow\frac{10m-10}{m^2+3}< 1\)

\(\Leftrightarrow m^2+3>10m-10\Leftrightarrow m^2-10m+13>0\) \(\left[{}\begin{matrix}m< 5-2\sqrt{3}\\m>5+2\sqrt{3}\end{matrix}\right.\)

10 tháng 7 2017

1.Để  đường thẳng  \(y=\left(m-1\right)x+3\) song song với đường thẳng \(y=2x+1\)

thì \(m-1=2\Rightarrow m=3\)

2. a. Với \(m=-2\Rightarrow\)\(\hept{\begin{cases}-2x-2y=3\\3x-2y=4\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{5}\\y=-\frac{17}{10}\end{cases}}\)

b. Với \(m=0\Rightarrow\hept{\begin{cases}-2y=3\\3x=4\end{cases}\Rightarrow\hept{\begin{cases}y=-\frac{3}{2}\\x=\frac{4}{3}\end{cases}\left(l\right)}}\)

Với \(m\ne0\Rightarrow\hept{\begin{cases}m^2x-2my=3m\\6x+2my=8\end{cases}\Rightarrow\left(m^2+6\right)x=3m+8}\)

\(\Rightarrow x=\frac{3m+8}{m^2+6}\)\(\Rightarrow y=\frac{mx-3}{2}=\frac{m\left(3m+8\right)-3\left(m^2+6\right)}{2\left(m^2+6\right)}=\frac{4m-9}{m^2+6}\)

Để \(x+y=5\Rightarrow\frac{3m+8}{m^2+6}+\frac{4m-9}{m^2+6}=5\Rightarrow7m-1=5m^2+30\)

\(\Rightarrow-5m^2+7m-31=0\)

Ta thấy phương trình vô nghiệm nên không tồn tại m để \(x+y=5\)

20 tháng 3 2021

Bài 1 : x² + x² -12 = 0

a = 1 , b = 1 , c = -12

∆ = 1 -4 × 1 × (-12) 

∆ = 49 > 0 .✓49 =7

Vậy pt có 2 ng⁰ pb ( tự viết nhé ) !

21 tháng 1 2021

 

b, \(\left\{{}\begin{matrix}x-2y=5\\mx-y=4\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\m\left(5+2y\right)-y=4\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\5m+2my-y=4\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\2my-y=4-5m\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\y\left(2m-1\right)=4-5m\end{matrix}\right.\)

Hpt trên có nghiệm duy nhất \(\Leftrightarrow\) 2m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) \(\dfrac{1}{2}\)

Khi đó ta có hpt:

\(\left\{{}\begin{matrix}x=5+2y\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2.\dfrac{4-5m}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

Vậy với m \(\ne\) \(\dfrac{1}{2}\) thì hpt trên có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

Vì x, y trái dấu nên ta xét 2 trường hợp

Th1: x > 0; y < 0

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{3}{2m-1}>0\\\dfrac{4-5m}{2m-1}< 0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2m-1>0\\4-5m< 0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m>\dfrac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\) m > \(\dfrac{4}{5}\) (Thỏa mãn)

Th2: x < 0; y > 0

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{3}{2m-1}< 0\\\dfrac{4-5m}{2m-1}>0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2m-1< 0\\4-5m< 0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}m< \dfrac{1}{2}\\m>\dfrac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\dfrac{4}{5}< m< \dfrac{1}{2}\) (Vô lý)

Vậy m > \(\dfrac{4}{5}\) thì hpt có nghiệm duy nhất và thỏa mãn x, y trái dấu

c, Từ b ta có:

 Với x \(\ne\) \(\dfrac{1}{2}\) hpt có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

Vì x = |y| \(\Leftrightarrow\) \(\dfrac{3}{2m-1}=\left|\dfrac{4-5m}{2m-1}\right|\)

Xét các trường hợp:

Th1: \(\dfrac{3}{2m-1}=\dfrac{4-5m}{2m-1}\) 

\(\Leftrightarrow\) 3 = 4 - 5m (Vì m \(\ne\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) 5m = 1

\(\Leftrightarrow\) m = \(\dfrac{1}{5}\) (TM)

Th2: \(\dfrac{3}{2m-1}=\dfrac{5m-4}{2m-1}\)

\(\Leftrightarrow\) 3 = 5m - 4 (Vì m \(\ne\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) 5m = 7

\(\Leftrightarrow\) m = \(\dfrac{7}{5}\) (TM)

Vậy với m = \(\dfrac{1}{5}\); m = \(\dfrac{7}{5}\) thì hpt có nghiệm duy nhất và thỏa mãn x = |y|

Chúc bn học tốt!

21 tháng 1 2021

Nguyễn Lê Phước Thịnh , Hồng Phúc , Nguyễn Thị Thuỳ Linh , Tan Thuy Hoang , Nguyễn Duy Khang , Nguyễn Trần Thành Đạt